
Computers & Security 132 (2023) 103342

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

MultiTLS : using multiple and diverse ciphers for stronger secure

channels

Ricardo Moura, Ricardo Lopes, David R. Matos, Miguel L. Pardal ∗, Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, Lisboa, 10 0 0-029, Lisbon, Portugal

a r t i c l e i n f o

Article history:

Received 9 January 2023

Revised 15 May 2023

Accepted 13 June 2023

Available online 21 June 2023

MSC:

0 0 0 0

1111

PACS:

0 0 0 0

1111

Keywords:

Secure communication channels

Transport layer security

Vulnerability-tolerance

Security through diversity

Tunneling

Virtual private network

a b s t r a c t

Computer communication is at the foundation of how the modern world works, connecting people and

machines over public infrastructure. For this reason, communication is exposed to attacks, either by pas-

sive listening, or by active interference in the communication. Security protocols like TLS (Transport Layer

Security) play a crucial role in ensuring the confidentiality, integrity, and authenticity of the communica-

tion. However, like in all technologies, there may be flaws in the design, implementation, or cryptography

of TLS that compromise the security of the communication channel. Remediation of such vulnerabilities

takes time, leaving valuable services exposed to potential attacks. In this article, we present MultiTLS ,

a middleware based on cipher diversity and network tunneling that enables secure communication even

when new vulnerabilities are discovered. MultiTLS creates a secure communication tunnel through the

encapsulation of k TLS channels, where each one uses a different cipher suite. This approach allows the

communication channel to remain protected, even when k − 1 cipher suites become vulnerable, because

of the remaining cipher suite. The diversity of cipher suites tolerates cryptography faults. We evaluated

the implementation of MultiTLS and concluded that it is easy to use and to maintain up-to-date, since it

does not require code changes to any of its dependencies. We also evaluated its performance in practical

use cases and proved that it is viable an useful for various personal and corporate contexts using Internet

communications.

© 2023 Elsevier Ltd. All rights reserved.

1

s

t

t

a

t

a

b

t

t

p

i

c

i

v

s

a

p

r

p

i

u

t

t

1

r

a

e

p

a

h

0

. Introduction

We live in an increasingly digital age where a large part of

ervices, such as banking, shopping, and healthcare are accessed

hrough the public Internet. There have been many cyberat-

acks that caused increased losses and damage to businesses

nd Internet users (Nadeau, 2017). This means that, nowadays,

he use of cryptography-based secure communication protocols

re a fundamental component of distributed systems and digital

usiness. They allow entities to exchange messages through a

rusted communication channel over the untrusted public In-

ernet. These channels aim to guarantee the following three

roperties: confidentiality : ensure that only the intended receiver

s able to read the message; integrity : ensure that messages

annot be changed without the receiver detecting it; authentic-

ty : ensure that the identity of the sender and receiver can be
erified.

∗ Corresponding author.

E-mail address: miguel.pardal@tecnico.ulisboa.pt (M.L. Pardal) .

i

i

w

p

c

s

ttps://doi.org/10.1016/j.cose.2023.103342

167-4048/© 2023 Elsevier Ltd. All rights reserved.
Transport Layer Security (TLS) is one of the most widely used

ecure communication protocols. The protocol allows server/client

pplications to communicate over a channel that is designed to

revent eavesdropping, tampering, and message forgery. The most

ecent version is TLS 1.3 (Rescorla, 2018). This protocol first ap-

eared under the name Secure Sockets Layer (SSL). It is the final ‘S’

n HTTPS that stands for ‘Secure’ and is visually perceived by end-

sers as the “padlock” in the web browser that signifies to them

hat the communication is secure. In 1994, Netscape Communica-

ions had developed SSL 1.0, that was never publicly released. In

995, SSL 2.0 was released, becoming the first release. SSL 3.0 was

eleased in 1996, bringing improvements to its predecessor such

s allowing perfect forward secrecy using the Diffie-Hellman key

xchange algorithm. TLS 1.0 was released in 1999 introducing sup-

ort for extensions in Client and Server Hello messages. TLS 1.1

nd TLS 1.2 were released, respectively in 2006 and 2008, bringing

mprovements such as reducing vulnerability to CBC block chain-

ng attacks and supporting more block encryption modes for use

ith AES (Advanced Encryption Standard). In 2018, TLS 1.3 was ap-

roved by the Internet Engineering Task Force (IETF), becoming the

urrent standard for secure connections, even though version 1.2 is

till the most widely used.

https://doi.org/10.1016/j.cose.2023.103342
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103342&domain=pdf
mailto:miguel.pardal@tecnico.ulisboa.pt
https://doi.org/10.1016/j.cose.2023.103342

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

1

n

a

n

g

c

a

f

t

v

a

v

v

t

a

t

t

e

1

i

k

t

d

m

s

l

s

t

o

o

c

T

a

e

t

v

p

w

m

l

v

l

t

T

t

t

n

n

o

a

t

1

l

S

e

s

2

s

t

W

t

i

2

p

v

a

p

u

v

f

t

a

T
b

a

t

p

H

e

h

c

s

a

t

t

t

R

(

fl

c

s

t

T

s

m

n

t

c

2

.1. Secure Channel Vulnerabilities

Protocols that allow secure communications may contain vul-

erabilities that make them insecure. Over the years, many vulner-

bilities have been discovered and corrected in SSL/TLS. The vul-

erabilities with which we are concerned can be divided into three

roups: design vulnerabilities, implementation vulnerabilities and

ryptographic mechanisms vulnerabilities. We will discuss vulner-

bilities at length in Section 2.2 .

When a new vulnerability is found, it will take significant time

or it to be fixed (Bilge and Dumitras, 2012). First, the owners of

he software or hardware need to determine at which level is the

ulnerability: is it a design or implementation flaw? Once the di-

gnosis is complete, remediation can start. After some time, new

ersions and patches are available, but they still need to be pro-

ided to third-parties that, in turn, will plan the most appropriate

ime for installation. Finally, and over time, the patches are applied

nd the vulnerability is fixed in existing deployments. However,

here will be some deployments that are never updated. During

his whole time, communication channels are exposed to attack-

rs.

.2. Security through Diversity

This work explores diversity in communication protocols by us-

ng multiple cipher suites. These suites are used for defining: a

ey exchange algorithm, an authentication mechanism, an encryp-

ion mechanism, and a message integrity protection. To implement

iversity, we intended to use existing libraries and tools without

odification, to be able to always benefit from the latest and most

ecure versions of them.

We developed MultiTLS , a middleware that obtains diversity by

everaging tunneling mechanisms. In our implementation, we used

ocat 1 , a tunneling software, and OpenSSL 2 , a TLS implementation,

o create multiple TLS channels and encapsulate each one in an-

ther. The source code for MultiTLS is publicly available 3 with an

pen-source license.

MultiTLS can be run as a command in the Linux shell and is

onfigured with a parameter k , called the diversity factor (k > 1).

his parameter specifies the number of TLS channels to be created

nd consequently the number of cipher suites to be used. k = 1 is

quivalent to a single TLS channel. The cipher suites used for mul-

iple TLS channels are different from each other to mitigate the

ulnerabilities that may be found in each one. This approach can

rovide security even in the presence of zero-day vulnerabilities

hich can not be prevented as they are unknown (Bilge and Du-

itras, 2012).

The communication channel created by MultiTLS has multiple

ayers of protection, so that if k − 1 of the used cipher suites are

ulnerable, communications will remain secure, since there is at

east one cipher suite that guarantees the security of communica-

ions, i.e, the confidentiality, integrity, and authenticity properties.

MultiTLS is an improvement over a previous work, vt-

LS (Joaquim et al., 2017), a vulnerability-tolerant communica-

ion protocol also based on diversity and redundancy of cryp-

ographic mechanisms to provide a secure communication chan-

el. However, vtTLS had some problems with software mainte-

ance because it modified an existing TLS implementation. On the

ther hand, MultiTLS can always incorporate the latest updates

nd security fixes because it supports the latest versions of TLS

ransparently.
1 http://www.dest-unreach.org/socat/
2 https://www.openssl.org/
3 https://github.com/inesc-id/MultiTLS

c

m

t

c

m

2
.3. Overview

The remainder of this document is structured as fol-

ows. Section 2 presents background and related work.

ection 3 presents MultiTLS in detail. Section 4 presents the

xperimental evaluation. Finally, Section 5 presents the conclu-

ions.

. Background and Related Work

In this section, we describe the SSL/TLS protocol and its ba-

ic design, presents some of the most important vulnerabilities in

he TLS protocol and in the cryptographic mechanisms used by it.

e also discuss related work on approaches to achieve security

hrough diversity. Finally, we summarize existing network tunnel-

ng mechanisms.

.1. The SSL/TLS Protocol

The SSL (Secure Sockets Layer) (Freier et al., 2011) / TLS (Trans-

ort Layer Security)(Rescorla, 2018) is a security protocol that pro-

ides secure communication channels between two entities, server

nd client. The protocol is structured in two layers: the TLS Record

rotocol and the TLS Handshake protocol. The Record protocol is

sed by the Handshake and the application data protocols to pro-

ide mechanisms for sending and receiving messages.

In regard to sending messages, the Record protocol starts by

ragmenting the message into blocks called TLSPlaintext . Af-

er the fragmentation step, each TLSPlaintext may be option-

lly compressed into a new block called TLSCompressed . Each

LSCompressed block is processed into a TLSCiphertext
lock by message authentication code (MAC) and encryption mech-

nisms. After all these steps, the message can be sent to the des-

ination. For receiving messages, the process is the inverse of the

rocess described above. Initially, during the first execution of TLS

andshake protocol, the TLS Record protocol does not compress,

ncrypt, and does not use the MAC, since the server and client

ave not yet agreed on the algorithms to be used for these actions.

The TLS Handshake protocol is used to establish or resume a se-

ure session between server and client. A session is established in

everal steps, each corresponding to a different message and with

 specific objective: a session identifier (chosen by the server),

he certificates (X509 standard), the compression algorithm used

o originate the TLS Compressed blocks in the Record Protocol,

he specifications cipher (MAC and cipher algorithm used in the

ecord Protocol to generate the TLSCiphertext), a master secret

shared between the client and the server) and the “is resumable”

ag that indicates whether the session can be used to initiate new

onnections. The Change Cipher Spec Protocol consists of a mes-

age encrypted and compressed according to the current state of

he connection, to signal a change in the set of negotiated ciphers.

he Alert Protocol sends an alert message that, depending on the

everity, can be of the warning or fatal type (warning/fatal). These

essages are encrypted and compressed based on the current con-

ection status. Following a successful handshake, the server and

he client can exchange information through the established secure

ommunication channel.

.2. TLS Vulnerabilities

Although the goal of the TLS protocol is to establish a secure

ommunication channel, it may still have unknown vulnerabilities

aking it insecure and susceptible to attacks. According to the In-

ernet Security Glossary, Version 2 (Shirey, 2007), vulnerabilities

an be classified into three groups: design vulnerabilities, imple-

entation vulnerabilities, and operation and management vulnera-

http://www.dest-unreach.org/socat/
https://www.openssl.org/
https://github.com/inesc-id/MultiTLS

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

b

n

t

t

a

t

i

b

a

2

i

D

T

t

m

u

p

u

t

“

m

“

p

u

d

r

m

o

t

s

t

2

O

l

H

s

m

a

c

o

m

t

b

fi

p

r

p

k

m

c

s

t

u

2

m

c

p

s

s

i

7

b

b

d

r

i

p

q

2

g

t

d

e

B

t

t

A

o

2

t

s

s

t

p

s

t

o

c

h

Y

i

i

2

s

f

t

m

m

a

d

t

w

m

c

r

s

ilities. In this work, we focus only on the first two groups of vul-

erabilities. The design vulnerabilities refer to protocol specifica-

ion failures and releasing a new version or update is the only way

o fix this kind of vulnerability. The implementation vulnerabilities

re related to failures that were created during the implementa-

ion phase of the protocol. To prove the importance of our work

n increasing communications security, we present some vulnera-

ilities found in the TLS protocol and in some of the cryptographic

lgorithms used by it.

.2.1. Design Vulnerabilities

An example of an attack that exploits a design vulnerabil-

ty is CRIME (Compression Ratio Info-leak Made Easy) (Rizzo and

uong, 2012). This vulnerability was found in TLS compression.

he main purpose of compression is to reduce the size of messages

o be transmitted, while preserving their integrity. DEFLATE is the

ost common compression algorithm used. One of the techniques

sed by compression algorithms is to replace repeated bytes with a

ointer to the first instance of that byte. If a victim and server are

sing the DEFLATE compression method and if an attacker knows

hat for the session the targeted website creates a cookie called

user” then the attacker can obtain the victim’s cookie through a

an-in-the-middle attack (MITM), so the attacker needs to inject

Cookie: user = 0” into the victim’s cookie, the server will only ap-

end the character “0” to the compressed response since “Cookie:

ser = ” is already sent in the victim’s cookie. All the attacker must

o is inject different characters and then monitor the size of the

esponse. If the response size is smaller than the initial one, it

eans that the character they injected is contained in the value

f the cookie and thus has been compressed, which is equivalent

o a match. If the character is not in the cookie value, the response

ize will be larger. Using this method, an attacker can brute-force

he cookie value by using the responses sent by the server.

.2.2. Implementation Vulnerabilities

In 2014, an implementation vulnerability was discovered in

penSSL, called Heartbleed. The name of the vulnerability is re-

ated to a code extension where the vulnerability was found: the

eartbeat extension (Seggelmann et al., 2012), which is an exten-

ion to the TLS protocol designed to enable a low-cost, keep-alive

echanism. The extension consists of sending a message with an

rbitrary payload and the size of that same payload. After the re-

eiver obtains this message, it returns the received payload.

The Heartbleed vulnerability (Carvalho et al., 2014) is a buffer

ver-read vulnerability that happens when the sender sends a

essage that specifies a payload size bigger than the real size of

he payload. The receiver, upon receiving the message, returns a

lock of memory where the sent payload begins plus the speci-

ed size of the received message, that is, it returns the received

ayload and dataset with size equal to the size specified in the

eceived message minus the real size of the message. This allows

otential attackers to read memory contents that should have been

ept private.

There are also vulnerabilities in the underlying cryptographic

echanisms used by the TLS protocol. Our solution uses diverse

ipher suites as a form to increase security. For this, it is neces-

ary to study the vulnerabilities in the cryptographic mechanisms

o know which cipher suites are more secure and which can be

sed.

.2.3. Vulnerabilities in Asymmetric Cipher Mechanisms

RSA (Rivest et al., 1978) proposed by Rivest, Shamir and Adle-

an, in 1978, is an asymmetric cryptographic algorithm used to

ipher and sign messages. The security of RSA is based on two

roblems: integer factorization problem and the RSA problem it-

elf (Menezes et al., 1996). The integer factorization problem con-
3

ists of the decomposition of a number into a product of smaller

ntegers that must be prime numbers. RSA with key size equal to

68 bits (RSA-768) is unsafe because Kleinjung et al. (2010) have

een able to factor a number with 768 bits, equivalent to a num-

er with 232 digits. Although the use of RSA-1024 is currently

iscouraged, no factorization has yet been published. Shor’s algo-

ithm (Shor, 1996) uses a theoretical quantum computer to factor-

ze integers in polynomial time, making the integer factorization

roblem easy to solve. However, this problem will only exist when

uantum computers are practical and available.

.2.4. Vulnerabilities in Symmetric Cipher Mechanisms

The Advanced Encryption Standard (AES) is an encryption al-

orithm created by Rijmen and Daemen, and standardized by

he NIST (2001) . The key used in AES can have one of three

ifferent sizes: 128, 192, or 256 bits. The size of the key influ-

nces the number of rounds that are, respectively, 10, 12 and 14.

ogdanov et al. (2011) published a biclique attack against AES,

hough only with slight advantage over brute force. The compu-

ational complexity of the attack is 2 126 . 1 , 2 189 . 7 and 2 254 . 4 for

ES128, AES192 and AES256, respectively. Despite this attack and

thers, AES is still considered a secure encryption mechanism.

.2.5. Vulnerabilities in Hash Functions

A hash function, sometimes also called message digest func-

ion, is an algorithm that transforms variable length data into

maller datasets with a fixed length called hash values or check-

ums. A hash function is required to satisfy the following proper-

ies (Menezes et al., 1996):

• Easy to compute the hash value for any given message;
• Preimage resistance: it is infeasible to generate a message that

has a given hash value;
• Second preimage resistance: it is infeasible to modify a message

without changing the hash value;
• Collision resistance: it is infeasible to find two different mes-

sages with the same hash.

Thus, the hash functions can be interpreted as a special com-

ression of the message that works like a fingerprint of the mes-

age, making it useful for data integrity checks and message au-

hentication. Note that it is impossible to have a unique identity

nce the message is compressed, allowing attackers to break the

ollision resistance property.

MD5 (Rivest, 1992) is a hash function that produces a 128 bit

ash. MD5 was proved not to be collision resistant by Wang and

u (2005) , through differential attacks. Differential cryptanalysis,

ntroduced by Biham and Shamir (1993) , analyzes the differences

n input pairs on the differences of the resultant output pairs.

.3. Achieving Security through Diversity

In this work we aim to achieve security through diversity. A

tatic system is characterized by no changes over time and there-

ore an attacker has time to discover vulnerabilities in the sys-

em. In order to overcome the problems caused by static defense

echanisms, moving target defense was proposed as a way to

ake it more difficult for an attacker to exploit vulnerabilities of

 system, through dynamic defense mechanisms. Moving target

efenses can be classified into two groups: proactive and reac-

ive. Proactive moving target defenses adapt to a specific schedule,

ithout feedback from the system. Reactive moving target defenses

ake changes in the protected system when they receive a notifi-

ation from a security sensor.

The term diversity describes multi-version software in which

edundant versions are purposely made different between them-

elves (Littlewood and Strigini, 2004). With diverse versions, one

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

h

f

i

f

2

c

a

i

t

s

p

d

c

t

i

w

w

b

i

O

m

p

u

2

d

d

c

p

l

s

s

r

i

K

N

e

c

g

a

e

t

i

o

d

h

s

h

n

n

t

h

c

m

t

m

n

i

t

a

3

t

M

c

t

w

m

l

t

q

t

t

o

a

n

a

p

e

k

n

c

s

a

c

a

i

s

b

p

v

a

i

a

d

t

s

t

3

c

b

t

opes that any faults they contain will be different and show dif-

erent failure behavior.

In MultiTLS we allow diverse ciphers to be combined arbitrar-

ly, because of the tunnelling approach, enabling moving target de-

ense in the use of ciphers for secure communication.

.3.1. Vulnerability-Tolerant TLS

The use of diversity for added security in a communication

hannel was previously used by Joaquim et al. (2017) in vtTLS . It

lso uses the diversity approach to solve the limitation of TLS hav-

ng only one cipher suite negotiated between server and client. In

hese cases, if one of the cryptographic mechanisms of the cipher

uite becomes insecure, the communication channels using this ci-

her suite may become vulnerable. It uses the diversity and re-

undancy of cryptographic mechanisms, keys and certificates. The

ommunication channels created by vtTLS are characterized by es-

ablishment of k cipher suites, so that if vulnerabilities are found

n the k − 1 cipher suites cryptographic algorithms, the channels

ill still remain secure due to the remaining cipher suite. vtTLS

as successfully implemented as a fork of OpenSSL version 1.0.2g,

ut moving to a newer version of the library requires implement-

ng the diversity features again. And again, for all future versions.

ur solution, MultiTLS , is similar to this approach but it does not

odify implementations of the libraries and tools, and only their

ublic interfaces are used. Because of this, this solution is able to

se the latest and most secure versions of the software.

.3.2. Tunneling

The term tunneling describes a process of encapsulating entire

ata packets as the payload within other packets, which are han-

led properly by the network on both endpoints (Larson and Cock-

roft, 2003). This characteristic in this type of protocol makes it

ossible to send data between two private networks, using a pub-

ic network infrastructure.

A communication tunnel is an essential component of a VPN,

hort for Virtual Private Network, a technology to ensure that

ensitive data can be transmitted securely, preventing unautho-

ized persons from having access to this information. When talk-

ng about VPN there are several types to consider (Khanvilkar and

hokhar, 2004): Machine-to-Machine, Machine-to-Network, and

etwork-to-Network.

For the tunnel connection to be successfully established, it is

ssential that both parties understand and use the same proto-

ol. The Internet Protocol (IP) transmits block of data called data-

rams from sources to destinations, which are hosts identified by

ddresses, as defined by Postel (1981) . In the IP header of the pack-

ts there is a field, called Protocol, to identify the next level pro-

ocol (Reynolds and Postel, 1994). In this field we can used the “IP

n IP” Tunneling protocol. In IP Tunneling (Estrin et al., 1995), the

riginal header is preserved, and simply wrapped in another stan-

ard IP header. An outer IP header is added before the original IP

eader. Between them are any other headers for the path, such as

ecurity headers specific to the tunnel configuration. The outer IP

eader source and destination identify the endpoints of the tun-

el. The inner IP header source and destination identify the origi-

al sender and recipient of the datagram.

IPsec (Kent and Seo, 2005) is a network protocol suite that au-

henticates and encrypts the packets sent over a network. IPsec

as two encryption modes: tunnel and transport. Tunnel mode en-

rypts the header and the payload of each packet while transport

ode encrypts the payload. IPsec uses the following subprotocols

o perform various functions:

• Authentication Headers (AH) provide authentication and data

integrity for IP datagrams;
• Encapsulating Security Payloads (ESP) provide confidentiality,
authentication and message integrity. t

4
The Secure Shell Protocol (SSH) is a protocol for secure re-

ote login and other secure network services over an insecure

etwork (Ylonen and Lonvick, 2006). SSH is typically used to log

nto a remote machine and execute commands, but it also supports

unneling. SSH is structured in three layers that provide the mech-

nisms that make SSH secure for tunneling:

• Transport: provides encryption, server authentication, and in-

tegrity protection (Ylonen and Lonvick, 2006);
• Authentication: runs on top of the Transport layer and provides

ways to authenticate the client to the server (Ylonen and Lon-

vick, 2006a);
• Connection: also runs on top of the Transport layer and

specifies a mechanism to multiplex multiple channels over

the underlying confidentiality and authentication trans-

port (Ylonen and Lonvick, 2006b).

. MultiTLS

MultiTLS provides secure communication channels with mul-

iple layers through tunneling of TLS channels within each other.

ultiTLS provides an increase in security since each of these TLS

hannels uses a different cipher suite than the others. As men-

ioned before, TLS channels individually use only one cipher suite,

hich consists of a single point of failure if the cryptographic

echanisms used become vulnerable. MultiTLS solves this prob-

em by allowing the server and the client to create a communica-

ion channel composed by k TLS channels, with k > 1 , and conse-

uently also allows to use k cipher suites and certificates, in con-

rast to a communication that uses only one TLS channel. In prac-

ical terms, we expect the value of k to range from 1 to 3. A value

f 1 represents a secure tunnel with baseline encryption, while

dding more different ciphers enhances the ability to tolerate vul-

erabilities. Values beyond 3 are not very likely due to the limited

vailability of diverse cipher suites and the accumulated impact on

erformance, as discussed in Section 4.2 .

The reason MultiTLS contributes to increased security is that

ven when k − 1 cipher suites become insecure, that is, even when

 − 1 TLS channels become vulnerable, the communication chan-

el created by MultiTLS , which is the combination of the k TLS

hannels, remains secure since there is still one TLS channel with

ecure cipher suite. The mechanisms used by MultiTLS allow cre-

ting k TLS channels and encapsulate one into another without

hanging the implementations of the used tools. This approach is

n advantage over vtTLS , since it does not require changes to the

mplementation of TLS.

When a vulnerability is discovered, its remediation is not in-

tantaneous, as it needs to be understood, the software needs to

e fixed, and the patches need to be distributed across many de-

loyments. In the meantime, attackers can target the valuable ser-

ices that are exposed. MultiTLS provides enhanced flexibility in

ddressing the issue. Unlike a single TLS channel that necessitates

mmediate attention, MultiTLS with a value of k > 1 allows oper-

tions to continue while the vulnerability and its impact are han-

led. Updates can be scheduled at a later time to minimize disrup-

ions, offering a more flexible and efficient approach to resolving

ecurity problems.

In the following sections, we will discuss use cases, followed by

he design and implementation of MultiTLS .

.1. Use Cases

MultiTLS can be used to add security to a communication

hannel without protection or to reinforce the security of existing

ut weak protection. To contextualize the use of MultiTLS in prac-

ical scenarios, four case studies were defined where the use of the

ool can offer security advantages:

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

b

w

t

l

e

s

t

f

u

p

p

r

n

b

a

r

c

t

t

m

t

p

t

m

c

w

v

V

fi

V

3

n

m

L

h

w

T

s

a

u

r

p

t

v

a

v

r

i

i

t

s

t

m

r

b

T

n

o

e

3

d

c

g

a

p

w

s

1

I

a

t

a

w

t

a

o

w

g

t

f

t

t

p

r

m

t

t

w

m

t

W

r

t

a

a

c

n

a

1. Secure communication between two organization networks;

2. Secure communication between two cloud solutions;

3. Secure communication between the employee’s device and the

organization’s network;

4. Secure communication between legacy applications.

In the case of secure communication between networks, it will

e necessary to configure the MultiTLS tool in both networks,

hich will work as a reverse proxy. It will allow secure connec-

ions through multiple encrypted TLS channels, which reinforce the

evel of security between two areas of operation of an organization,

.g. two buildings in different locations.

In the case study of secure communication between two cloud

olutions, MultiTLS reinforces security in the communication be-

ween two cloud solutions, whether from the same provider or

rom different providers. Here too, it will be necessary to config-

re a machine in each cloud solution that will serve as a reverse

roxy for the remaining assets.

The case study of secure communication between the em-

loyee’s device and the organization’s network, is intended to rep-

esent a scenario when the employee is outside the organization’s

etwork, for example, working from home or from an hotel. It will

e the responsibility of the organization to guarantee the avail-

bility of the service (MultiTLS as server), accepting connection

equests. On the employee’s side, she must configure the tool in

lient mode and establish the connection with the server.

The last case, secure communication between legacy applica-

ions, is focused on existing applications, possibly with obsolete

echnologies but that still play a critical business function. They

ay even have known security vulnerabilities. It will be necessary

o configure the MultiTLS tool on the machines where these ap-

lications are located. The use of the tool allows communication

o be carried out securely by encapsulating the legacy application

essage through recent and secure cryptographic protocols. A spe-

ific example would be the interconnection of an application server

ith a database server that does not support a recent TLS protocol

ersion.

The first two case studies correspond to network-to-network

PNs, the third case study pertains to a host-to-network VPN, and,

nally, the fourth use case corresponds to a machine-to-machine

PN.

.2. Design

To encapsulate a TLS channel in another TLS channel, we use

etwork tunnel interfaces (abbreviated as TUN interfaces). This

echanism is a feature offered by some operating systems, namely,

inux. Unlike common network interfaces, TUN interfaces do not

ave physical hardware components, that is, they are virtual net-

ork interfaces implemented and managed by the kernel itself.

UN is a virtual point-to-point network device. Its driver was de-

igned with low-level kernel support for IP tunneling. It works

t the protocol layer of the network stack. TUN interfaces allow

ser-space applications to interact with them as if they were a

eal device, remaining invisible to the user. These applications pass

ackets to a TUN device, in this case, the TUN interface delivers

hese packets to the network stack of the operating system. Con-

ersely, the packets sent by an operating system to a TUN device

re delivered to a user-space application that attaches to the de-

ice. Figure 1 shows a practical example in which an application

unning on two different network hosts communicate through TUN

nterfaces.

We create an encapsulation of several tunnels by creating TUN

nterfaces through others created previously. For each of these in-

erfaces, we can use different TLS implementations running in user
5
pace that allow creating a TLS channel that is encapsulated by the

unnel used by the hosts.

Figure 2 presents the architecture of MultiTLS for host com-

unicating over the network with k = 2 . This parameter configu-

ation allows communication over two tunnels, where the tunnel

etween the TUN1 interfaces encapsulates the tunnel between the

UN2 interfaces. In addition, we can see processes that we desig-

ate as “TLS implementation”. These processes serve the purpose

f setting up and overseeing the TLS channel for each tunnel, op-

rating as client on one side, or as server on the other side.

.3. Combining Diverse Cipher Suites

In MultiTLS , we are interested in having the maximum possible

iversity of cryptographic mechanisms, because we want to avoid

ommon vulnerabilities. Evaluating the diversity among crypto-

raphic mechanisms is not trivial. For this purpose, we based our

nalysis on work by Carvalho (2014) regarding heuristics to com-

are diversity among different cryptographic mechanisms. In our

ork, we focused on searching for the combination of four cipher

uites that guarantee greater diversity and are supported by TLS

.2 from the OpenSSL 1.1.0g implementation.

We began by evaluating the diversity of public key mechanisms.

n this case, we observed the various combinations of key exchange

nd authentication algorithms in cipher suites. The insecure cryp-

ographic mechanisms were discarded as well as the ECDH and DH

lgorithms since there are the variants of them, ECDHE and DHE,

hich guarantee perfect forward secrecy. This analysis resulted in

he following combinations:

• ECDHE for key exchange and ECDSA for authentication;
• RSA for key exchange and authentication;
• DHE for key exchange and DSS for authentication;
• ECDHE for key exchange and RSA for authentication;
• DHE for key exchange and RSA for authentication.

To avoid that the key exchange and authentication algorithms

re repeated consecutively, we choose the first four combinations

f the above list, keeping the presented order, i.e., the first tunnel

ill use ECDHE for key exchange and ECDSA as authentication al-

orithm, the second RSA for key exchange and authentication, the

hird DHE for key exchange and DSS for authentication and the

ourth DHE for key exchange and RSA for authentication.

Considering the combination of key exchange and authentica-

ion algorithms, we group the supported cipher suites according to

his combination. After this step, we chose in each group the ci-

her suite that maximizes the diversity of the symmetric key algo-

ithms and the hash function between each of the four groups. To

easure the diversity of the cryptographic mechanisms, we have

aken into account some characteristics such as the origin, i.e.,

he author or institution that proposed the algorithm, the year in

hich it was designed, the size of the key in the case of the sym-

etric key algorithms and the digest size in the case of hash func-

ions and other metrics described in research by Carvalho (2014) .

e concluded that the combinations of 4 symmetric key algo-

ithms that maximize the diversity itself are:

• ChaCha20 + Camellia 256 + AES256-GCM + AES128CBC;
• ChaCha20 + Camellia 256 + AES256-CBC + AES128GCM;
• ChaCha20 + Camellia 256 + Camellia128 + AES256-GCM.

Regarding hash functions, the variety is greatly reduced since

here is only SHA-256 and SHA-384. However, some symmetric key

lgorithms use operation modes, such as CBC-MAC (CCM mode)

nd Galois/Counter Mode (GCM), that provide authenticated en-

ryption with associated data (AEAD). It is considered an alter-

ative mechanism which can be used redundantly with HMAC to

chieve even higher diversity. In addition, the cipher suites with

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Fig. 1. Example of using TUN interfaces.

Fig. 2. MultiTLS design with k = 2 and the flow of sending messages from one application to another on different hosts.

t

t

k

c

d

c

t

3

i

t

m

s

a

t

t

i

3

c

he ChaCHA20 algorithm use the Poly1305 hash which is a one-

ime message authenticator. Poly1305 takes a 32-byte one-time

ey and a message and produces a 16-byte message authentication

ode (MAC).

From these analyses, the cipher suites selected to be used by

efault in MultiTLS with k ≤ 4 are:

• TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256;
• TLS_RSA_WITH_AES_128_CCM_8;
• TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256;
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.

If the MultiTLS user selects only 2 tunnels, i.e., k = 2 , the first

ipher suite shown in the above list is used in the first tunnel and

he second cipher suite is used in the second tunnel.
6
.4. Interception Resistance

A man-in-the-middle (MITM) attack occurs when an attacker

ntercepts and potentially manipulates the communication be-

ween two parties, allowing the attacker to eavesdrop or alter the

essages, or to impersonate one of the parties. Although TLS is de-

igned to safeguard against MITM attacks, vulnerabilities can still

rise in certain implementations or configurations, making such at-

acks possible. MultiTLS introduces multiple intermediate protec-

ion levels, and so it increases the difficulty for attackers attempt-

ng to carry out interception attacks.

.5. Running MULTITLS

MultiTLS was implemented as a script in Bash language and

an be run as a shell command on Linux. Before presenting how

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

M

c

c

e

b

c

I

t

t

a

i

m

o

i

e

3

t

t

F

M

s

b

u

s

s

m

m

d

t

t

e

o

w

b

b

c

o

o

l

o

r

$

a

a

s

t

r

s

t

m

a

$

f

i

1

i

t

i

i

t

p

t

s

w

c

o

c

t

f

w

O

a

s

s

e

t

i

t

a

t

3

t

I

m

T

t

p

c

t

t

D

fi

b

t

b

t

c

u

u

ultiTLS creates the secure tunnels, we will first introduce the

ommands that allow us to create them:

• multitls -s port nTunnels [cert cafile
cipher]

• multitls -c port nTunnels IPServer [cert
cafile cipher]

The flags -s and -c mean that MultiTLS will run as a server or

lient, respectively. The port argument specifies the port used to

stablish the last tunnel. In the case of the server, MultiTLS will

e listening on that port. In the case of the client, MultiTLS will

onnect to that port of the machine that has the IP specified in the

PServer argument. The nTunnels argument specifies the number of

unnels that MultiTLS will create. In addition, we must specify:

he path to the file with its certificate and private key in the cert

rgument and the path to the file that contains the peer certificate

n the cafile argument. The cipher argument lets us specify one or

ore cipher suites. If cipher suites are not specified, the default

nes will be used. The arguments between brackets must be spec-

fied as many times as the value of the nTunnels argument because

ach tunnel will use a set of keys and ciphers.

.6. Implementing the Tunnels

The execution of commands provided by MultiTLS allows

he creation of TUN interfaces and the creation of the tunnel

hat encapsulates a TLS channel, as explained in Section 3.2 .

igure 2 shows the scheme resulting from the execution of the two

ultiTLS commands as shown in Section 3.5 .

MultiTLS depends on the socat version 1.7.3.2 and OpenSSL ver-

ion 1.1.0g. Socat is a command line utility 4 that establishes two

idirectional byte streams and transfers data between them. The

se of socat can be applied to a wide variety of purposes since the

treams can be constructed from a large set of different types of

ources and sinks, also designated by address types, besides the

ultiple options that may be applied to streams. A socat com-

and has the following structure: socat [options] address1 ad-

ress2, where [options] means that there may be zero or more op-

ions that modify the behavior of the program. The specification of

he address1 and address2 consists of an address type keyword, for

xample, TCP4, TCP4-LISTEN, OPENSSL, OPENSSL-LISTEN, TUN; zero

r more required address parameters separated by ‘:’ from the key-

ord and each other; and zero or more address options separated

y ‘,’.

The MultiTLS script starts by analyzing the arguments provided

y the user. Afterwards, these arguments are used to execute socat

ommands. MultiTLS creates k tunnels running k socat command

n the server and k commands on the client. For the establishment

f a tunnel using the socat commands, MultiTLS executes the fol-

owing two commands, the first on the server side and the second

n the client side:

• socat openssl-listen:$port,cert = $cert,cafile =
$cafile, \ cipher = $cipher TUN:$ipTun/24,tun-name
= $nameTun,up

• socat openssl-connect:$ipServer:$port,cert
= $cert, \ cafile = $cafile,cipher = $cipher \
TUN:$ipTun/24,tun-name = $nameTun

In the first command, we have the $port argument that rep-

esents the port where the socat will be listening, we have the

cert, $cafile and $cipher arguments that have the same meaning

s the MultiTLS command arguments with the same names. The

rguments $ipTun and $nameTun are, respectively, the IP of the
4 http://www.dest-unreach.org/socat

i

g

o

7

erver in the TUN interface and the name of that, which is created

hrough this command.

In the second command, we have the argument $ipServer that

epresents the IP of the server, the argument $port that repre-

ents the port of the server where the socat connects to establish

he communication. We have the $cert, $cafile, and $cipher argu-

ents that have the same meaning as the cert, cafile, and cipher

rguments in the MultiTLS commands. The arguments $ipTun and

nameTUN are, respectively, the IP of the client in the TUN inter-

ace and its name, which is created through this command.

MultiTLS by default assumes that the IP and names for the TUN

nterfaces are 10.$k.1.$i and TUN$k, where $k is the tunnel number,

 ≤ k ≤ nT unnels and $i has the value 1 if it is the server and 2 if

t is the client.

After the establishment of the first tunnel, MultiTLS can create

he second tunnel which is encapsulated by the first tunnel, us-

ng the previous socat commands in which the value of $ipServer

nstead of being the real IP of the server is the IP of the TUN in-

erface created on the server to establish the first tunnel, which as

reviously mentioned is 10.1.1.1, by default. To create more tunnels,

he IP of the last TUN interface created on the server side must be

pecified in the $ipServer argument.

TUN interfaces allow MultiTLS to create multiple virtual net-

ork interfaces. It is through the TUN interfaces that MultiTLS en-

apsulates the various tunnels. These interfaces operate at level 3

f the OSI model, and these devices can be used to establish VPN

ommunications, as they allow the responsible software to encrypt

he information before it is sent. MultiTLS uses several TUN inter-

aces, as each interface will allow establishing a TLS tunnel that

ill be encapsulated by the TLS tunnel of the next TUN interface.

n the other hand, MultiTLS uses OpenSSL as a dependency, which

llows performing all the cryptographic part, from creating and

igning client and server certificates to the development of mes-

age ciphers. Whereas, the Socat dependency allows MultiTLS to

stablish multiple tunnels. This tool allows data transfer between

wo independent channels, being responsible for creating the TUN

nterfaces and using OpenSSL. That is, it is through Socat that the

unnel is established between the TUN interface on the client side

nd the TUN interface on the server side, using the implementa-

ion of OpenSSL in order to protect the connection.

.7. Configurations

To successfully establish communication through the MultiTLS

ool, it is necessary to ensure some configurations in the machines.

n a first phase, the MultiTLS client uses port 4040 to send infor-

ation that will be used to establish encrypted communication.

his information includes: the IP address; the number of tunnels

o consider in the MultiTLS communication to be established; the

ort on which this communication will be made; and the client

ertificate used in the first tunnel. On the server side, the informa-

ion is received on port 4040 and sends its certificate to the first

unnel. The client receives the server’s certificate on port 4040.

ue to these initial negotiations, it is necessary to configure any

rewalls that may interfere with the communication, to accept in-

ound and outbound data flow to port 4040. Once the initial nego-

iations are finished, the tool can now establish k tunnels (defined

y the user and less than or equal to four). The first tunnel is es-

ablished through the port indicated by the user when starting the

lient-side program. For the remaining tunnels, the port number

sed will be incremented from the port initially indicated by the

ser.

If it is necessary to communicate between different networks,

t is necessary to configure port forwarding to traverse a network

ateway, such as a router. After this configuration, MultiTLS will

perate transparently.

http://www.dest-unreach.org/socat

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Fig. 3. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages in relation to the number of tunnels created.

4

t

p

a

4

a

h

c

d

4

w

m

P

I

a

t

o

o

r

t

a

t

M

t

i

e

s

m

f

m

t

n

c

n

e

k

t

o

k

k

f

m

1

i

n

“

t

m

g

c

s

i

d

T

T

c

e

i

F

t

m

e

o

1

e

s

. Evaluation

The experimental evaluation aims to answer questions about

he performance and cost of MultiTLS . We have the following ex-

eriment sets: performance, file transfers, comparison with other

pproaches, and a use case.

.1. Setup

For all the experiments, two virtual machines were used, one

s a server and the other as a client, running on separate physical

osts.

Each presented measurement was repeated 100 times, with the

omputed average presented as the result. We assume a normal

istribution, treating each run as a sample.

.2. Performance

In this Section we assess the performance of MultiTLS . We

ant to answer two specific questions: What is the cost of adding

ore tunnels?What is the cost of encrypting messages?

In the following experiments, each virtual machine had 2 VC-

Us, 8 GB RAM, and Ubuntu Linux 16.

In the first experiment, we used the iperf3 tool, version 3.0.11.

perf3 is a tool used to measure network performance. It has server

nd client functionality and can create data streams to measure

he throughput between the two ends. It supports the adjustment

f several parameters related to timing and protocols. The iperf3

utput presents the bandwidth, transmission time, and other pa-

ameters.

To answer the first question, the experiment consisted of using

he iperf3 tool to measure the transmission time of 1 MB, 100 MB

nd 1 GB for each k , considering k ≤ 4 . The cipher suites used in

his evaluation are the same ones that are defined by default in

ultiTLS . The average and the standard deviation of transmission

ime of 1 MB, 100 MB and 1 GB for each value of k can be seen

n Figure 3 . We start with k = 1 so as to have as baseline a single

ncryption, i.e., we are not comparing against a scenario without

ecurity.

Figure 4 shows for each message size the overhead of the trans-

ission time for k = 2 , k = 3 and k = 4 in relation to k = 1 . There-

ore, we can see that for k = 2 and k = 3 the cost of having added
8
ore tunnels increases as the size of the message to be transmit-

ed also increases. For k = 4 the cost of having added more chan-

els decreased as the size of the message to be transmitted in-

reased. We can also observe that the transmission time for k tun-

els is less than k times the value of k = 1 for each message size,

xcept for k = 4 , where the overhead exceeds 4 times the value of

 = 1 and for k = 3 in the 1GB transmission where the time is 3.04

imes greater than for k = 1 .

We can answer the first question that for k = 2 the performance

f MultiTLS is acceptable, since the time of sending messages with

 = 2 is less than the double of the time of sending messages with

 = 1 . With 3 tunnels, i.e., k = 3 , for the transfer of 1 GB, the per-

ormance of the MultiTLS is poor because the sending time is

ore than three times the time of k = 1 , in contrast, to transfer

 MB and 100 MB the performance is good since the sending time

s less than three times the time of k = 1 .

The use of tunneling with multiple encapsulation layers can sig-

ificantly impact network performance, a phenomenon known as

TCP meltdown” or “TCP-over-TCP collapse”. TCP congestion con-

rol algorithms struggle to handle the complex feedback loops from

ultiple layers of tunneling, resulting in higher latency and de-

raded throughput (Harkanson et al., 2019).

The second experiment aims to evaluate the cost of en-

rypting the communication messages. To do this, using the

ame virtual machines, we performed the same tests we did

n the first experiment, however changing the cipher suites by

efault from MultiTLS to TLS_ECDHE_ECDSA_WITH_NULL_SHA,

L S_RSA_WITH_NULL_SHA256, TL S_RSA_WITH_NULL_SHA and

LS_ECDHE_RSA_WITH_NULL_SHA. Therefore, the messages ex-

hanged by the client and the server were not encrypted. This

xperiment helps us realize the influence of encrypting the data

n the total transmission time of messages with different sizes.

igure 5 shows the average and standard deviation of transmission

ime of 1 MB, 100 MB, and 1 GB for each value of k .

As with the first experiment, for each message size, the trans-

ission time increases as the number of tunnels increases. How-

ver, we verified that the transmission time of 1 MB for all values

f k is greater than k times the time of k = 1 . In the transfer of

00 MB and 1 GB with k tunnels, the transmission time does not

xceed k times the value of k = 1 .

Figure 6 shows the percentual difference between the first and

econd experiment, for each message size and k . We can see that,

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Fig. 4. The overhead of adding more tunnels in relation to k = 1.

Fig. 5. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages in relation to the number of unencrypted tunnels.

Fig. 6. Difference between first and second evaluation results.

9

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Table 1

Results for file transfer with k = 0 .

k = 0

25MB File 50MB File 75MB File 100MB File

1st 0.08 s 0.20 s 0.24 s 0.31 s

2nd 0.08 s 0.18 s 0.24 s 0.33 s

3rd 0.07 s 0.15 s 0.24 s 0.26 s

4th 0.08 s 0.14 s 0.23 s 0.44 s

...

Mean 0.08 s 0.17 s 0.22 s 0.33 s

f

m

e

a

t

h

1

e

t

4

8

c

S

T

c

a

t

m

t

m

F

k

t

b

l

a

t

r

o

f

t

o

fi

i

s

i

i

o

f

t

c

a

w

T

Table 2

Results for file transfer with k = 1 .

k = 1

25MB File 50MB File 75MB File 100MB File

1st 2.90 s 3.78 s 6.93 s 9.86 s

2nd 2.25 s 3.63 s 6.63 s 9.81 s

3rd 3.25 s 2.86 s 7.50 s 11.90 s

4th 2.58 s 2.87 s 8.77 s 8.77 s

...

Mean 2.87 s 3.30 s 7.39 s 9.54 s

Table 3

Test table for k = 2 .

k = 2

25MB File 50MB File 75MB File 100MB File

1st 3.00 s 8.38 s 14.41 s 19.16 s

2nd 4.14 s 7.28 s 16.09 s 20.38 s

3rd 2.07 s 7.63 s 13.92 s 21.38 s

4th 5.81 s 7.04 s 15.78 s 19.98 s

...

Mean 3.41 s 7.70 s 14.46 s 20.26 s

Table 4

Results for file transfer with k = 3 .

k = 3

25MB File 50MB File 75MB File 100MB File

1st 7.61 s 16.95 s 19.42 s 30.48 s

2nd 6.81 s 14.89 s 20.39 s 29.51 s

3rd 5.93 s 15.27 s 20.05 s 28.43 s

4th 5.48 s 15.54 s 19.51 s 30.76 s

...

Mean 7.20 s 16.00 s 20.28 s 30.17 s

Table 5

Results for file transfer with k = 4 .

k = 4

25MB File 50MB File 75MB File 100MB File

1st 10.95 s 19.91 s 26.68 s 39.35 s

2nd 10.44 s 18.54 s 27.11 s 38.83 s

3rd 9.07 s 19.66 s 26.31 s 40.08 s

4th 10.13 s 18.91 s 26.54 s 41.02 s

... s

Mean 9.39 s 19.37 s 27.13 s 39.66 s

w

n

g

c

t

t

m

4

M

p

c

f

r

e

p

n

or certain message sizes and k , messages sent on the first experi-

ent took less time than messages sent without encryption. How-

ver, we can observe that in these cases the average overhead is

bout −10% , whereas in cases where encrypted communications

ake longer than unencrypted communications, the average over-

ead is 35%. Overall, the overhead of encrypting the messages is

3%.

For all this, we can answer the second question: the time to

ncrypt the messages has a considerable low impact given that it

akes 13% more time.

.3. File Transfers

For this set of experiments, we used machines 4 VCPUs, still

 GB RAM, and Ubuntu Linux 20.04 LTS.

This scenario is based on the machine-to-machine for se-

ure communication between legacy applications, described in

ection 3.1 . More specifically, FTP (File Transfer Protocol) was used.

hrough its client/server architecture, FTP is able to establish a

onnection between two points, which can be used to transfer files

nd perform other operations. The tests carried out consisted of

ransferring different files (25 MB, 50 MB, 75 MB and 100 MB) and

easuring the transfer time for different numbers of tunnels. Ini-

ially, as a reference, a test was performed for k = 0, that is, the

easurements were made without using any tunnel, just a normal

TP communication. Then the same procedure was performed for

 = 1, k = 2, k = 3 and k = 4, where k represents the number of

unnels used by the tool. In order to minimize the impact of possi-

le disturbances on the network, all the results obtained were col-

ected at the same time of day, under similar conditions. Another

spect that was taken into account was the representativeness of

he data. In order to guarantee that the collected data sample was

epresentative, the arithmetic mean and standard deviation of the

btained data was calculated. After collecting the samples, it was

ound that the standard deviation for all cases considered was less

han one second.

The results obtained are show in tables related to the number

f tunnels (k = 0 , k = 1 , k = 2 , k = 3 and k = 4). Each table also has

ve columns, the first indicating the order in which the data were

nserted, and the remaining four indicating the value of the mea-

urements for the different files considered. Finally, each table also

ndicates the mean transfer time for each file.

The data referring to the transfer of files using FTP only (k = 0)

s shown in Table 1 .

Using only FTP (k = 0), it was possible to verify that the sending

f files was practically instantaneous. Then, the same test was per-

ormed for k = 1 , that is, using the tool with only one configured

unnel. The results obtained can be observed in Table 2 .

Through the observed data, it was possible to verify that when

onfiguring a connection with only one tunnel, an increase in the

verage time is already noticeable. The remaining data, configured

ith two, three and four encapsulated tunnels, can be seen in the

ables 3 , 4 , and 5 , respectively.
10
Figure 7 summarizes the data collected in the experiments,

hen using files of different sizes and different numbers of tun-

els. The larger the file size and the number of tunnels used, the

reater the transfer time. This result was expected, taking into ac-

ount that not only was the size of the file itself increased, but also

he overhead caused by the addition of tunnels to the communica-

ion. The number of tunnels chosen for the communication has a

ore significant impact on the transfer time.

.4. Comparison with VTTLS and DTLS

The purpose of this section is to compare the performance of

ultiTLS with other tools and to know which of these approaches

erforms better. For this purpose, we use the same virtual ma-

hines as the experiment in Section 4.2 . vtTLS is used to trans-

er three files each with the size of 1 MB, 100 MB and 1 GB. We

an vtTLS 100 times for each of these files. In addition to this

xperience, we also run a file transfer using a Datagram Trans-

ort Layer Security (DTLS) (Rescorla and Modadugu, 2012) chan-

el implemented through the GnuTLS library. This channel used

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Fig. 7. File transfer rate results (MB/s).

Fig. 8. Time for sending messages with 1MB, 100MB and 1GB in size via vtTLS , 2 MultiTLS tunnels and 1 DTLS communication over 1 MultiTLS tunnel.

t

r

t

b

p

t

T

p

i

o

t

t

t

a

t

F

f

t

t

o

t

h

n

i

4

h

f

e

t

s

6

o

n

i

q

5 https://www.amazon.com/
6 https://www.google.com/
7
he cipher suite TLS_RSA_AES_128_GCM_SHA256. This application

an over one tunnel created by MultiTLS . DTLS is a communica-

ion protocol that provides security, such as TLS, but for datagram-

ased applications. The purpose of using DTLS is to measure the

erformance of a channel that uses UDP over TCP, since with Mul-

iTLS communication we have tunnels of several tunnels, that is,

CP over TCP. Besides the diversity of cipher suites used, this ex-

erience also shows that it is possible to have a diversity of TLS

mplementations if the application using MultiTLS uses a library

ther than OpenSSL.

Figure 8 allows us to compare the average of the results ob-

ained from the two previous experiences with the averages of

he results obtained in the first experiment with k = 2 once the

wo previous experiments use approaches in which the messages

re encrypted twice such as MultiTLS with two tunnels. In addi-

ion, we can also observe the standard deviation in each column.

igure 8 also shows that, of the three approaches, vtTLS is the

astest and the DTLS channel approach is the slowest. The values of

he MultiTLS results are closer to the results of the vtTLS than to

he DTLS channel approach. However, the transfer time overhead

f 1MB, 100MB and 1GB between vtTLS and MultiTLS are, respec-

ively, 525%, 164% and 173%. The DTLS channel approach does not

ave an expected performance because the server only sends the
11
ext fragment after receiving the size of the last fragment sent by

t.

.5. Browser to Web Proxy Performance

Although the use of MultiTLS presents a transfer time over-

ead in relation to vtTLS , we wanted to know what is the per-

ormance of MultiTLS applied in a use case. We use MultiTLS to

stablish communication between a browser and a proxy, based on

he scheme shown in Figure 2 .

To do these experiments, one machine ran the Squid proxy, ver-

ion 3.5.12, and the other ran the Google Chrome browser, version

6.0.3359.117.

In this evaluation we tested four approaches: no proxy, use

nly the proxy, use the proxy using one and two MultiTLS tun-

els. These four approaches allow us to evaluate the cost of us-

ng MultiTLS . The evaluation consisted of using the browser to re-

uest 30 times certain URLs from Amazon

5 , Google 6 , Safecloud

7 ,
http://www.safecloud-project.eu/

https://www.amazon.com/
https://www.google.com/
http://www.safecloud-project.eu/

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

Fig. 9. Time to load sites with: no proxy, with proxy, with proxy using MultiTLS with 1 tunnel and with 2 tunnels.

T

t

d

s

l

d

d

t

a

a

o

5

o

e

v

b

c

T

t

fi

b

c

t

p

t

t

p

a

p

u

l

i

t

t

o

m

l

o

c

t

c

p

t

f

i

n

r

b

s

s

u

w

t

D

r

t

r

f

a

F

(

D

écnico 8 and Youtube 9 websites for each approach and registered

he value of the load event that appears on the network tab in the

eveloper tools of the browser. The load event is fired when a re-

ource and its dependent resources have finished loading. We col-

ect the data with the browser development tools with the cache

isabled.

Figure 9 presents the average of the results obtained with the

ifferent approaches for each requested URL. We can observe that

he use of MultiTLS in the communication between the browser

nd the proxy was insignificant. We can conclude that MultiTLS is

 tool with good performance in tasks common to the day-to-day

f many Internet users.

. Conclusion

We presented MultiTLS , a middleware that allows the creation

f a channel of communication through the encapsulation of sev-

ral secure tunnels in others. It increases security by using the di-

ersity of cipher suites of the tunnels so that if k − 1 cipher suites

ecome insecure, there still remains cipher suite that protects the

ommunication. MultiTLS has the advantage of not modifying any

LS implementation or any of its dependencies.

To evaluate MultiTLS , several tests were executed with the in-

ention of measuring its performance and cost. The performance of

le transfer was tested with different file sizes and different num-

ers of tunnels, confirming that these two variables have signifi-

ant influence. The larger the file size, the greater the impact of

he number of tunnels chosen on the transfer time. We also com-

ared MultiTLS with the protocol vtTLS and we conclude that, al-

hough it performs less favorably in comparison, it has the advan-

age of not modifying any TLS implementation or any of its de-

endencies. In addition, MultiTLS can be used in a simple way by

n application, such as communication between a browser and a

roxy running on different hosts or by an application that allows

s to create a TLS or DTLS channels. If these applications use a TLS

ibrary other than OpenSSL then diversity in TLS implementation

s achieved, which makes communication even more secure, since

he damage caused by vulnerabilities in one of these implementa-

ions does not endanger communication.
8 https://tecnico.ulisboa.pt/en/
9 https://www.youtube.com/watch?v=oToaJE4s4z0

A

H

n

12
In our future work , we will focus on the following areas. Firstly,

ur research will concentrate on improving network tunnel perfor-

ance, specifically addressing latency and bandwidth usage.

Next, we plan to port MultiTLS to other operating systems

ike Windows and Android/iOS to cater to an even broader range

f use cases. Additionally, we will conduct testing on resource-

onstrained devices to validate the practical applicability of Mul-

iTLS in securing Internet of Things applications. This presents a

hallenge due to the limitations of these devices, such as low-

ower processors, limited memory, and constrained communica-

ion protocols.

Another focus of our work is updating the diversity mechanisms

or TLS version 1.3, that brings significant enhancements, includ-

ng: resistance against downgrade attacks, simplified cipher suite

egotiation, as well as support for the latest cryptographic algo-

ithms.

Finally, we will build upon the groundwork laid

y Carvalho (2014) on diversity measurements in cipher-suite

election. Our goal is to update the study and introduce diversity

coring for each cryptographic mechanism. This will deepen our

nderstanding of diversity in cryptographic systems and pave the

ay for future solutions that will provide even greater security

hrough diversity.

eclaration of Competing Interest

The authors declare the following financial interests/personal

elationships which may be considered as potential competing in-

erests: Miguel L. Pardal, David R. Matos, and Miguel P. Correia

eport financial support was provided by European Commission

or H2020-653884 (SafeCloud). Miguel L. Pardal, David R. Matos,

nd Miguel P. Correia report financial support was provided by

oundation for Science and Technology (FCT) for UIDB/50021/2020

INESC-ID).

ata availability

No data was used for the research described in the article.

cknowledgments

This work was supported by the European Commission project

2020-653884 (SafeCloud) and by Fundação para a Ciência e a Tec-

ologia (FCT) with reference UIDB/50021/2020 (INESC-ID).

https://tecnico.ulisboa.pt/en/
https://www.youtube.com/watch?v=oToaJE4s4z0
https://doi.org/10.13039/501100000780

R. Moura, R. Lopes, D.R. Matos et al. Computers & Security 132 (2023) 103342

R

B

B

Y

B

C

C

E

F

H

J

K

K

K

L

L

M

N

N

P

R
R

R

R
R

R

S

S
S

W

Y

Y

Y

eferences

iham, E., Shamir, A., 1993. Differential cryptanalysis of the data encryption stan-

dard .

ilge, L., Dumitras, T., 2012. Before we knew it: an empirical study of zero-day at-
tacks in the real world. In Proceedings of the ACM Conference on Computer and

Communications Security 833–844 .
lonen, T., Lonvick, C.. The Secure Shell (SSH) Transport Layer Protocol .

ogdanov, A., Khovratovich, D., Rechberger, C., 2011. Biclique cryptanalysis of the full
aes. Cryptology ePrint Archive, Paper 2011/449. https://eprint.iacr.org/2011/449 .

https://eprint.iacr.org/2011/449 .

arvalho, M., Demott, J., Ford, R., Wheeler, D.A., 2014. Heartbleed 101. IEEE Security
and Privacy 12, 63–67 .

arvalho, R.J., 2014. Authentication Security through Diversity and Redundancy for
Cloud Computing. Instituto Superior Técnico, Universidade de Lisboa .

strin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., 1995. IP in IP Tunneling.
RFC. Internet Engineering Task Force . https://tools.ietf.org/html/rfc1853

reier, A., Karlton, P., Kocher, P., 2011. The Secure Sockets Layer (SSL) Protocol. https:
//tools.ietf.org/html/rfc6101 .

arkanson, R., Kim, Y., Jo, J.-Y., Pham, K., 2019. Effects of tcp transfer buffers and

congestion avoidance algorithms on the end-to-end throughput of tcp-over-tcp
tunnels. In: Latifi, S. (Ed.), 16th International Conference on Information Tech-

nology-New Generations (ITNG 2019). Springer International Publishing, Cham,
pp. 401–408 .

oaquim, A., L. Pardal, M., Correia, M., 2017. Vulnerability-Tolerant Transport Layer
Security. 21st International Conference on Principles of Distributed Systems

(OPODIS) .

ent, S., Seo, K., 2005. Security Architecture for the Internet Protocol. RFC. Internet
Engineering Task Force . https://tools.ietf.org/html/rfc4301

hanvilkar, S., Khokhar, A .A ., 2004. Virtual private networks: an overview with per-
formance evaluation. IEEE Communications Magazine 42, 146–154 .

leinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P.,
Kruppa, A., Montgomery, P.L., Osvik, D.A., Te Riele, H., Timofeev, A., Zimmer-

mann, P., 2010. Factorization of a 768-bit rsa modulus. In: Advances in Cryptol-

ogy – CRYPTO 2010. Springer Berlin Heidelberg, pp. 333–350 .
arson, R., Cockcroft, L., 2003. CCSP : Cisco Certified Security Professional Certifica-

tion. McGraw-Hill/Osborne .
ittlewood, B., Strigini, L., 2004. Redundancy and Diversity in Security. Computer

Security ESORICS 2004 227–246 .
enezes, A.J., van Oorschot, P.C., Vanstone, S.A., 1996. Introduction to public-key

cryptography. In: Handbook of Applied Cryptography. CRC Press, pp. 355–422 .

adeau, M., 2017. State of Cybercrime 2017: Security events decline, but not the
impact.

IST, 2001. Announcing the Advanced Encryption Standard (AES). Announcement.
National Institute of Standards and Technology (NIST) . https://csrc.nist.gov/

publications/detail/fips/197/final
ostel, J., 1981. Internet Protocol. RFC. Internet Engineering Task Force . https://tools.

ietf.org/html/rfc791

escorla, E., 2018 https://tools.ietf.org/html/rfc8446 .
escorla, E., Modadugu, N., 2012 https://tools.ietf.org/html/rfc6347 .

eynolds, J., Postel, J., 1994. Assigned Numbers. RFC. Internet Engineering Task
Force . https://tools.ietf.org/html/rfc1700

ivest, R.. The MD5 Message-Digest Algorithm (RFC 1321) .
ivest, R.L., Shamir, A., Adleman, L., 1978. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM .

izzo, J., Duong, T., 2012. Crime: Compression ratio info-leak made easy. In:
ekoparty Security Conference .

eggelmann, R., Tuexen, M., Williams, M., 2012. Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension. RFC. RFC Editor .

hirey, R., 2007. Internet Security Glossary, Version 2. RFC. RFC Editor .
hor, P., 1996. Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer. SIAM Journal on Computing 26 (5),
1484–1509 .

ang, X., Yu, H., 2005. How to Break MD5 and Other Hash Functions. Advances in

Cryptology – EUROCRYPT .
lonen, T., Lonvick, C.. The Secure Shell (SSH) Protocol Architecture (RFC 4251) .

lonen, T., Lonvick, C., 2006. The Secure Shell (SSH) Authentication Protocol. RFC.
Internet Engineering Task Force . https://tools.ietf.org/html/rfc4252

lonen, T., Lonvick, C., 2006. The Secure Shell (SSH) Connection Protocol. RFC. Inter-
net Engineering Task Force . https://tools.ietf.org/html/rfc4254
13
Ricardo Moura has a MSC (2018) in Computer Science

and Engineering from Instituto Superior Técnico, Univer-
sity of Lisbon. He was a Trainee Researcher at INESC-ID

in 2017-2018, and is now a TIBCO EAI Consultant at Way-
Logic.

Ricardo Lopes has a BSc (2019) from ISCTE - Instituto
Universitário de Lisboa and an MSc (2021) in Information

Security and Ciberspace Law from from Instituto Superior

Técnico, University of Lisbon. He is currently a Consultant
at UNIPARTNER IT Services.

David R. Matos has a BSc (2012) and a MSc (2013) in In-
formatics Engineering from the Faculty of Sciences, Uni-

versity of Lisbon and a PhD (2019) in Computer Sciences
and Engineering from Instituto Superior Tecnico, Univer-

sity of Lisbon. He is an Invited Assistant Professor at In-
stituto Superior Técnico. His research interests are in the

area of Distributed Systems and Cybersecurity.

Miguel L. Pardal graduated (20 0 0), mastered (20 06), and

doctored (2014) in Computer Science and Engineering
from Instituto Superior Técnico (IST), University of Lis-

bon, Portugal. He is an Assistant Professor at IST and a
researcher at INESC-ID in the Distributed, Parallel and Se-

cure Systems Group (DPSS), where he led the SureThing

project (FCT) and completed a participation in the Safe
Cloud EU Project (H2020). He was also a Guest Scientist

at the Chair of Network Architectures and Services at TU
Munich. During his PhD, he was a visiting student at the

Auto-ID Labs at MIT. His current research interest is in Cy-
bersecurity applied to the digital frontiers of the Internet

of Things and Cloud Computing.

Miguel Correia is a Full Professor at Instituto Superior

Tecnico (IST), Universidade de Lisboa, senior researcher
at INESC-ID, and member of the Distributed, Parallel and

Secure Systems group (DPSS). He has been involved in
many international and national research projects re-

lated to Cybersecurity (QualiChain, SPARTA, SafeCloud,
PCAS, TCLOUDS, ReSIST, CRUTIAL, MAFTIA) and has more

than 200 publications. His research focuses on Cyberse-
curity and Dependability (a.k.a. Fault Tolerance) in Dis-

tributed Systems, in the context of different applications

(Blockchain, Cloud, Mobile).

http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0001
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0002
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0028
https://eprint.iacr.org/2011/449
https://eprint.iacr.org/2011/449
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0003
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0004
https://tools.ietf.org/html/rfc1853
https://tools.ietf.org/html/rfc6101
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0007
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0008
https://tools.ietf.org/html/rfc4301
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0010
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0011
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0012
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0013
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0014
https://csrc.nist.gov/publications/detail/fips/197/final
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc1700
http://refhub.elsevier.com/S0167-4048(23)00252-3/othref0003
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0020
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0021
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0022
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0023
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0024
http://refhub.elsevier.com/S0167-4048(23)00252-3/sbref0025
http://refhub.elsevier.com/S0167-4048(23)00252-3/othref0004
https://tools.ietf.org/html/rfc4252
https://tools.ietf.org/html/rfc4254

	MultiTLS: using multiple and diverse ciphers for stronger secure channels
	1 Introduction
	1.1 Secure Channel Vulnerabilities
	1.2 Security through Diversity
	1.3 Overview

	2 Background and Related Work
	2.1 The SSL/TLS Protocol
	2.2 TLS Vulnerabilities
	2.2.1 Design Vulnerabilities
	2.2.2 Implementation Vulnerabilities
	2.2.3 Vulnerabilities in Asymmetric Cipher Mechanisms
	2.2.4 Vulnerabilities in Symmetric Cipher Mechanisms
	2.2.5 Vulnerabilities in Hash Functions

	2.3 Achieving Security through Diversity
	2.3.1 Vulnerability-Tolerant TLS
	2.3.2 Tunneling

	3 MultiTLS
	3.1 Use Cases
	3.2 Design
	3.3 Combining Diverse Cipher Suites
	3.4 Interception Resistance
	3.5 Running MultiTLS
	3.6 Implementing the Tunnels
	3.7 Configurations

	4 Evaluation
	4.1 Setup
	4.2 Performance
	4.3 File Transfers
	4.4 Comparison with vtTLS and DTLS
	4.5 Browser to Web Proxy Performance

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

