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Abstract—Although there is continuous research to improve
web security, web applications are constantly being attacked
due to vulnerable source code. A common way used to find
vulnerabilities in code is with source code static analysis tools.
However, these tools have two problems: they must be coded
manually to deal with all types of vulnerabilities and they only
work with a specific programming language. This paper presents
an approach that aims to improve security of web applications by
identifying vulnerabilities in code written in different languages.
Moreover, we do not hard-code the rules of detection, but instead
use machine learning to configure them. The approach was
implemented in a tool called MERLIN. This tool was tested with
samples from the SRD database and real-world web applications
written in Java and PHP.

I. INTRODUCTION

Web applications are under constant attack. According to
Symantec’s monthly threat reports web applications attacks
have increased to around 2 million attacks per day in 2019
[1]. Furthermore, the NTT Global Threat Intelligence Report
claims that application-specific and web application attacks
represented over 32% of all threats in 2019, earning the top
category of attack activity [2]. Since web applications are
commonly used to access services and resources, vulnerable
web applications can have a deep impact on performance and
reputation of an organization or a business.

For more than a decade, there has been a great amount of
research aimed at improving security of web applications [3]–
[20]. Source code static analysis tools that are intended to find
security vulnerabilities in web applications are commonly used
by software development organizations [5], [7], [12], [17]–
[20]. However, these tools have two main problems: they are
language-specific, and they have to be programmed, or at least
configured manually, to deal with each type of vulnerabilities.

This paper presents a novel approach to detect input valida-
tion vulnerabilities in web applications. This approach aims
to solve the two problems described earlier by detecting
vulnerabilities in code written in different languages and by
learning how to detect vulnerabilities. The approach consists
of generating Java bytecode from web applications in vari-
ous high-level languages. Then, the generated Java bytecode
is used to produce code in an intermediate language. Java
bytecode is also analyzed to construct control-flow graphs
(CFGs) of the web application. Thereafter, we combine data
flow analysis of the intermediate code with the CFGs to detect
potentially vulnerable code. This approach is independent

from the programming languages in which the source code
is written, since potential vulnerabilities are identified in a
common intermediate language.

The techniques that are used to automatically detect vulner-
abilities in code are taint analysis [4], [7], [12] and machine
learning classification [21]. First, potentially vulnerable code
is translated into an attribute vector. Then, a machine learning
classifier processes the attribute vector extracted from the code
and classifies it as vulnerable or not vulnerable. The classifier
learns which instructions are associated with the presence of
vulnerabilities and allows detecting different types of input
validation vulnerabilities.

This paper also describes the implementation of our ap-
proach in a tool called MERLIN (Multi-language wEb vulneR-
abiLity detectIoN). Although MERLIN may support different
programming languages, we chose to focus on code written
in PHP and Java which are languages widely used to develop
the back-end of web applications. While JavaScript is the most
used language for the front-end, we do not consider it for
evaluation of our tool; input validation in the JavaScript front-
end should never be trusted as it can be easily tampered with
by a malicious user. Therefore, in this paper we are interested
in the back-end only.

During implementation of this tool we faced several chal-
lenges. The first challenge was to find an intermediate lan-
guage suitable to represent different high-level languages. We
ended up selecting Jimple [22], a three-address intermediate
representation of Java bytecode that is easily obtained from
Java source code by, for example, using the javac compiler.
The second challenge was translation from PHP to Java
bytecode, since the main goal of the software available for
this purpose was not to produce bytecode, but to execute
it. Another major challenge was to interpret functions in
the intermediate code. Web applications written in languages
other than Java do not preserve the original symbols in the
intermediate code. Thus, it was necessary to perform an
extensive analysis of the intermediate code, so that the tool
is able to correctly interpret and process the symbols, and
specifically function names, resulted from compilation. Yet
another challenge was the need to include configuration files
with sensitive sinks, sources and sanitization functions for each
programming language considered.

We trained and tested several machine learning classifiers
to understand which one fits best for the tool: CART, Random
Forest, Naı̈ve Bayes, KNN, Logistic Regression, Multi-Layer978-1-7281-8326-8/20/$31.00 ©2020 IEEE



Perceptron and SVM. For learning purposes, we used code
samples from the SRD database [23] and code samples written
by us to select the classifier. The SRD dataset includes 33,081
code samples in the two languages, of which 27,024 are
written in PHP and 6,061 are in Java.

We set up the tool to detect several types of input val-
idation vulnerabilities. So far, the types of vulnerabilities
considered are: SQL injection, cross-site scripting, remote file
inclusion, local file inclusion, directory/path traversal, source
code disclosure, operating system command injection and PHP
command injection. This set of vulnerabilities represent high
risk vulnerabilities [24]. Therefore, it is important that these
vulnerabilities are identified and mitigated.

For evaluation of the tool we used 12 real world web
applications, code samples from the SRD database and code
samples written by us. In total the tool has processed over 35
thousand files and over one million lines of code. In addition,
we compared the results obtained by MERLIN with other tools
that aim to detect vulnerabilities. The evaluation shows that
MERLIN is capable of processing web applications written in
different languages and detecting the proposed vulnerabilities.

The main contributions of this paper are: (1) an approach
to improve the security of web applications written in various
programming languages by analyzing common intermediate
code; (2) a data mining technique that learns how to detect
vulnerabilities in code; (3) the implementation of the approach
in a tool that detects vulnerabilities in code written in Java and
PHP and (4) an experimental evaluation to verify whether the
tool is capable of detecting vulnerabilities in real word web
applications written in different languages.

II. BACKGROUND AND RELATED WORK

This section presents relevant concepts and related work.

A. Static Analysis for Security

Static analysis tools examine source, binary or intermediate
code without executing it. Static analysis can be used to detect
security vulnerabilities. These tools have two main advantages
when compared with manual auditing: they can be used early
in the software development life cycle; and they require lower
expertise in security to use.

A technique to perform static analysis is data flow analysis.
Data flow analysis examines how the data flows through the
code of the program, considering the code semantics. Taint
analysis is one of the most common techniques used to
perform data flow analysis [12], [17], [25]. This technique
involves tainting data that enters through an entry point.
If tainted data reaches a sensitive sink, it is reported as a
vulnerability. However, if the data passes through a sanitization
or validation function, it becomes untainted and, in this case,
it is not reported as a vulnerability.

Wasserman and Su [12] combined taint analysis and string
analysis to detect XSS vulnerabilities. Initially, the tool per-
forms an adapted string analysis to track untrusted substring
values. Then, the tool verifies the existence of untrusted scripts
by using formal language techniques. Other approach is the

one used by RIPS [25] which executes a backward-directed
taint analysis capable of detecting 20 different types of vulner-
abilities. RIPS first performs intra- and inter-procedural analy-
sis to generate summaries of the data flows. Those summaries
are then used to execute efficiently the taint analysis. Our
tool uses a different approach. MERLIN performs data flow
analysis aiming at identifying all the instructions semantically
related in terms of data dependency or control dependency to
the sensitive sinks. The tool generates potentially vulnerable
code slices regardless of whether the data reaches the sensitive
sink tainted or not. Thus, we can conclude that MERLIN does
not perform taint analysis.

B. Security Analysis with Machine Learning

Machine learning techniques are used to overcome some
limitations of static analysis tools. One of these limitations is
that static analysis developers have to code their knowledge,
which can have a negative impact on accuracy. There are
several approaches to include machine learning in detection of
vulnerabilities that vary from how the code is analyzed, which
attributes are chosen, the method used to perform attribute
extraction to the machine learning algorithms used in the tool.

PhpMinerI [26] uses data mining methods to predict the
existence of SQLi and XSS vulnerabilities. The tool extracts
a set of attributes from the dependence graph of each sensitive
sink. Then, it uses data mining algorithms to classify the code
as vulnerable or not vulnerable. WAP [17] is different, since it
uses a hybrid approach to detect vulnerabilities. Initially, the
tool performs taint analysis to flag candidate vulnerabilities.
Then, it uses data mining to predict existence of false positives.
Finally, it automatically corrects the code by inserting fixes
for the actual flagged vulnerabilities. Vuldeepecker [20] uses
deep learning to identify vulnerabilities, instead of machine
learning classifiers. The tool uses code gadgets to represent
a program. Then, the code gadgets are transformed into an
attribute vector. Finally, a neural network classifies the code
gadget as vulnerable or not vulnerable. Achilles [27] also uses
a deep learning system, namely an array of Long-Short Term
Memory Recurrent Neural Network, to detect vulnerabilities
within source code. The tool uses several algorithms to pre-
process the Java source code. The processed code is then
provided as input to a neural network, which in turn generates
a n-dimensional vulnerability prediction vector.

MERLIN uses an approach similar to the one used by
PhpMinerI. Our tool, like PhpMinerI, uses machine learning
classifiers to detect vulnerabilities. However, our approaches
to code analysis and attribute extraction are different. Further-
more, MERLIN considers more types of vulnerabilities and
analyzes performance of a larger number of machine learning
classifiers.

C. Bytecode Analysis

Static analysis can also be done on bytecode, instead of
source code. Bytecode is a low-level representation of a
program and it is generated by compilation of the source
code, e.g., Java bytecode generated from a Java program.



Genaim and Spoto created a context sensitive compositional
information flow analysis for Java bytecode [28]. Although
the purpose of the analysis is not to detect vulnerabilities, it
can be used to verify security of a program. Phosphor [29] is
a taint tracking tool for the Java Virtual Machine (JVM) that
also analyzes Java bytecode. This tool analyzes the program
data flow by assigning labels to the data and propagating them.

MERLIN analyzes intermediate code written in Jimple (Java
sIMPLE), part of the Soot framework [22]. Jimple is a three-
address intermediate representation of Java bytecode. The
main advantage of Jimple is that it is more understandable
and easier to analyze than Java bytecode. Similarly to source
code, Jimple has local variables, instead of manipulating data
in a stack like bytecode. Moreover, its statements are always
simple, never nested, which greatly simplifies analysis. To
analyze Jimple code, Soot receives as input Java source code
or Java bytecode. However, it is possible to modify Soot, so
it can receive other languages as input. An example of a Soot
modification is a tool called Dexpler [30]. Dexpler converts
Dalvik bytecode, used for Android applications, into Jimple.
MERLIN does not include any modification of Soot, since it
always provides Java bytecode as input.

III. INPUT VALIDATION VULNERABILITIES

Missing or incorrect validation of user input is the cause of
most web application vulnerabilities. Input validation vulner-
abilities are exploited as follows: a potentially malicious input
enters the program through an entry point such as $ GET in
PHP and reaches a sensitive sink where the vulnerability can
be exploited, such as echo() that allows cross-site scripting.
Web applications can be protected by placing sanitization
functions between the entry point and the sensitive sink.
Sanitization functions will verify the input inserted and if
necessary transform it into trusted data by filtering or escaping
suspicious characters or constructs. This section describes
vulnerability types considered in evaluation.

SQL injection (SQLi) has the highest risk according to
OWASP Top 10 2017 [24]. SQLi vulnerabilities are caused
by the use of dynamically generated queries that receive
unsanitized or incorrectly sanitized input [8]. When executed,
these queries can cause unexpected actions on the database and
have a great impact on a web application. Figure 1 shows code
samples written in PHP and Java vulnerable to SQLi. In these
code samples, a malicious input enters through the variable
$u/u (entry point) and reaches a sensitive sink on line 3, where
it is executed. The attacker can exploit this vulnerability by
entering something similar to ’ OR 1=1 -- which modifies
the query and gives access to all users’ passwords. This
vulnerability can be mitigated by sanitizing the input using
standard language functions, e.g., mysqli escape string() in
PHP or StringEscapeUtils.escapeSql() in Java, or by utilizing
prepared statements.

Cross-site scripting (XSS) is also among the top 10 vulner-
abilities with the highest risk [24]. XSS occurs when unvali-
dated data from an untrusted source is included into dynamic
content of a web page, e.g., as HTML or JavaScript [12].

(a) Code sample in PHP

(b) Code sample in Java

Fig. 1. Examples of vulnerabilities detected by the tool

There are three main XSS classes depending on the source of
the data: reflected or non-persistent, stored or persistent, and
DOM-based. In case of reflected XSS, data enters from a web
request. In case of stored XSS, data enters from the back-end
storage. DOM-based XSS occurs when an attacker modifies
the DOM in the victim’s browser and consequently, causes
client side code to run differently than expected.

The other six vulnerabilities supported by MERLIN are
presented briefly. Remote File Inclusion (RFI) and Local File
Inclusion (LFI) vulnerabilities allow attackers to embed user-
supplied files, stored locally or remotely, into a vulnerable web
page leading to sensitive information disclosure or arbitrary
code execution. Directory traversal or path traversal (DT/PT)
vulnerability allows access to files that otherwise would not
have been accessible by manipulating the paths using ”dot-
dot-slash” sequences. The source code disclosure (SCD) vul-
nerability allows accessing web application source code and
configuration files. An operating system command injection
(OSCI) allows executing an arbitrary command crafted by an
attacker. A PHP command injection vulnerability allows an
attacker to supply PHP code that is executed by an eval()
statement.

IV. THE MERLIN APPROACH

The proposed approach aims to detect security vulnerabil-
ities in code by analyzing data flow of an intermediate code
representation.

Regardless of the programming language, source code is
translated into a common intermediate code representation:
Jimple. Analysis of the intermediate code representation re-
sults in a language-independent tool, making it possible to
use it for processing web applications written in different
languages, such as Java, PHP, JavaScript, and Python. For
now, we chose to focus on code written in PHP and Java,
which are languages widely used to develop the back-end of
web applications.

Our approach does not require explicit coding for each vul-
nerability. Machine learning classifiers are trained with code
samples properly identified as vulnerable or non-vulnerable.
With this training, the classifiers learn which categories of
instructions are associated with the presence of vulnerabilities.

Our approach includes the following stages, implemented
by the modules represented in Figure 3:

1) Conversion to intermediate code: compile source code
into Java bytecode; convert Java bytecode into Jimple;
generate control-flow graphs (CFGs) for all code.



(a) Jimple code generated from PHP code

(b) Jimple code generated from Java code

Fig. 2. Translation to Jimple of the 3rd line of the code in Fig. 1

Fig. 3. Architecture of the MERLIN tool (for PHP and Java code)

2) Analysis of intermediate code: extract the different con-
trol flow paths from the CFGs; analyze each path to
search for potentially vulnerable code slices;

3) Vulnerability detection: extract attributes from the code
slices; classify them using machine learning algorithms
as vulnerable or non-vulnerable.

The following sections present each of these stages.

V. CONVERSION TO INTERMEDIATE CODE

First, source code received as input is compiled into Java
bytecode. A tool for performing this translation depends on
the source language in which the web application is written:
javac when processing Java code, JPHP [31] when processing
PHP code. Since PHP and Java are languages with different
characteristics, the translated code for PHP and Java is also
different. Java is an object-oriented programming language.
Therefore, javac produces a file with bytecode for each class.
PHP, on the other hand, is a scripting language that sup-
ports object-oriented and procedural programming. So, JPHP
generates a class and produces a file with bytecode for each
class, function and script code. In addition to compiling PHP
into Java bytecode, JPHP is also able to execute the resulting
bytecode. To correctly interpret and execute the resulting Java
bytecode, JPHP modifies the format of some instructions. For
instance, assignment instructions are sometimes transformed in
a call to the function jphp.runtime.Memory.assignRight($a,$b),
where the value of $a is assigned to the variable $b. These
changes have to be handled by our tool.

Then, the Soot framework [22] analyzes and converts Java
bytecode into Jimple, a typed 3-address intermediate code

(a) Simplified instructions generated from PHP code

(b) Simplified instructions generated from Java code

Fig. 4. Example instructions in simplified representation (from code in Fig. 1)

representation. Each source code instruction is broken down
into several separate Jimple instructions; variable names are
changed and temporary symbols are generated. A translation
example of the third line of code from Figure 1 into Jimple
code is shown in Figure 2. Thus, when MERLIN reports a
vulnerability, it is specified the class of vulnerability and the
file and function/method where the vulnerability is located.
However, it is not possible to specify with precision the code
line where the vulnerability is found, as that information is lost
during intermediate code translation. This is an example that
shows that it is not possible to achieve the same precision when
analyzing intermediate code that is achieved when analyzing
source code. Furthermore, by using intermediate code, the
memory complexity increases, since a source code instruction
is transformed into a three-address representation, which in
turns increases the amount of memory used.

The Soot framework itself also generates control-flow
graphs (CFGs) for each method declared within a class defined
in the generated Java bytecode.

VI. ANALYSIS OF INTERMEDIATE CODE

Jimple code and the generated CFGs are analyzed with
the objective of identifying potentially vulnerable code slices.
MERLIN starts analysis by processing a method that corre-
sponds to the class constructor. Then it proceeds to processing
all the remaining methods of the class. The tool repeats this
process for all source classes until it has processed all methods
in all files.

To correctly process parallel branches in source code, we
analyze data flow of the code together with CFGs. The tool
extracts CFG subtrees that correspond to control flow paths
and process them independently. The tool creates a context for
each extracted subtree. A context is a copy of the symbol table
that contains variables and assignment instructions. Maintain-
ing separate contexts for different control flow paths ensure
that when there are branches that occur simultaneously and
are consequently independent from each other, instructions of
one branch do not interfere with instructions of other parallel
branches. If the branches merge, variables processed in each
branch are merged as well and stored in a symbol table outside
of the contexts.

Another vital part of the tool is correct interpretation of
Jimple instructions. MERLIN performs lexical analysis of all
instructions. The tool includes a Tokenizer that breaks each



TABLE I
EXAMPLES OF ATTRIBUTES

Attribute Category PHP Examples Java Examples
Sources $ GET getParameter

Sanitization escapeshellarg escapeSql
Extract Substring substr split

Concatenate String concat append
Replace String str replace replace

Remove Whitespace trim deleteWhitespace
Type Checking gettype instanceof

IsSet Source isset($source) isNull
Pattern Control preg match matches

Whitelist filter var isValid
Error throw throw

Encoding utf8 encode encode
Encryption crypt Cipher.doFinal

Numeric conversion intval Integer.intValue
Add Char addslashes -

SQL Query: Agg Function AVG
SQL Query: From clause FROM

SQL Query: Numeric Entry REGEXP
SQL Query: Complex Query INNER JOIN

instruction into a sequence of tokens. Then, the tokens are
parsed by MERLIN. Finally, the parsed tokens are converted
into a simplified representation, that, in turn, is translated
into an attribute. When the tool processes an assignment
statement, it also stores the variable name and the simplified
representation of the assignment instruction in a symbol table.
Examples of the simplified representation of instructions in
Figure 1 are presented in Figure 4.

In order to detect potential vulnerabilities, MERLIN needs a
configuration file with variables and functions that correspond
to entry points, sanitization functions and sensitive sinks for
the source language. When the tool finds a sensitive sink,
MERLIN collects the potentially vulnerable code slice. The
code slice includes instructions in the simplified representa-
tion relative to the sensitive sink, all the parameters and all
statements semantically related in terms of data dependency
or control dependency with those parameters.

MERLIN also supports the processing of a few relevant
built-in functions from Java and PHP. For instance, the tool
is capable of correctly processing functions that create and
manipulate arrays. As a result the tool performs a more com-
plete and accurate analysis. As previously mentioned, JPHP
changes the format of some instructions. Therefore, we had
to include an auxiliary submodule for interpreting functions
and instructions generated by JPHP. This required extensive
reverse engineering to understand how JPHP transforms in-
structions and symbols. Similar submodules may be needed
for other programming languages that usually do not compile
into Java bytecode, because tools that translate them into Java
bytecode may also make adaptations to the instructions, as
performed by JPHP.

When MERLIN finds a call to an unrecognized func-
tion/method, it checks whether the method/function is defined
by a user by checking if the method/function is defined in one
of the modules. If it is found, the tool verifies whether the
method was previously called. If the method/function was not
previously called, the tool analyzes the Jimple code and CFG
of the method/function and, builds a summary. A summary

stores potentially vulnerable code slices and if applicable code
slices associated with the return value of the function. If the
function has been previously called, MERLIN processes the
existing summary. In both cases, the values of the parameters
are propagated as the method/function summary is processed.
Thus, MERLIN is capable of performing inter-procedural
analysis.

VII. VULNERABILITY DETECTION

In addition to standard input validation and sanitization
functions (e.g., mysqli escape string()), there are some other
operations that can also untaint data. For instance, adding
characters to a string or extracting a substring may untaint
a string. However, these operations may in some cases untaint
instructions and, in others, they may not. Therefore, this
problem is considered to be undecidable and it is known
to be related to Turing’s Halting problem [32]. As a result,
when using static analysis to detect vulnerabilities, these
operations cannot be analyzed precisely. The problem is even
more complicated when the aim is to detect vulnerabilities in
multiple programming languages.

Static analysis tools usually require to explicitly code
knowledge for each vulnerability type considered, which can
affect accuracy. To eliminate the need for additional coding,
MERLIN uses machine learning classifiers to detect existence
of vulnerabilities. All potentially vulnerable code slices are
transformed into an attribute vector. Then, they are classified as
vulnerable or non-vulnerable. The development of this module
required a three-stage process:

1) Configuration stage: where we define the set of attributes
and the classifier to use;

2) Learning stage: where we train the classifier with a set
of vulnerable and non-vulnerable code slices;

3) Classification stage: where we classify the code slices as
vulnerable or not; this stage unlike the previous stages
which are part of the configuration of the tool, it is
performed by the tool.

The following sections explain these stages.

A. Attribute Extraction

Potentially vulnerable code slices identified during the inter-
mediate code analysis are transformed into an attribute vector.
Each code slice instruction in the simplified representation is
processed separately to check if it matches any attribute. If it
matches an attribute, it gets reflected in the attribute vector.
The attributes are binary. They can only have two values: 0,
which indicates that there is no instruction in the code slice
that matches the attribute, and 1, otherwise.

We started with a list of attributes selected for the WAP tool
[33]. We extended this list by analyzing code manually and
identifying other operations that could taint or untaint data.
We could identify seven main sets of attributes that influence
the presence of vulnerabilities:

• Sources: represent places where potential malicious input
can enter the program. This set of attributes is essential



TABLE II
CLASSIFIERS’ RESULTS WITH UNBALANCED DATASET

Classifier Precision (%) Recall (%) F-Score (%) Acc (%)
CART 81.79 79.23 80.42 91.09

Random Forest 81.14 79.67 80.48 90.99
Naı̈ve Bayes 70.04 87.91 71.95 79.63

KNN 76.70 68.28 71.29 88.47
LR 81.29 76.09 78.34 90.57

MLP 81.87 78.78 80.20 91.07
SVM 81.87 79.18 80.43 91.11

since a vulnerability only exists if the code slice has an
entry point.

• Sanitization functions: represent functions that are able to
transform untrusted data into trusted data by filtering or
escaping characters. This set of attributes is also impor-
tant, because these functions can mitigate a vulnerability.

• String manipulation: represent functions that manipulate
strings. We consider functions that extract substrings,
concatenate and replace strings, add a character and
remove spaces. These functions can untaint strings de-
pending on how they are used and the vulnerability
considered.

• Validation: represent functions and operations that val-
idate data. In this category we consider attributes that
verify data types, check if the value is set, or if it matches
a pattern, belongs to a white-list or an error function.

• SQL query manipulation: these attributes are only rele-
vant when the tool is dealing with SQL injection. The
tool checks if an SQL query contains: data inserted in
the SQL aggregate function, a FROM clause, a complex
SQL query and a test to verify if the data is numeric.

• String conversion: represent functions that transform a
string into another data format. In this category, we
consider functions that encode a string, return numeric
values and hash or encrypt a string in order to ensure
secure data transfer. When the format is converted, the
input may no longer pose a threat to a web application.

• Others: this category includes functions capable of un-
tainting data by conditioning data flow (using ifs), by
using operators that perform automatic type conversions
or by performing type casting.

We provide a configuration file to MERLIN with functions
and variables that match each attribute. For each programming
language, it is necessary to provide a configuration file.
Examples of attributes considered in the configuration file are
presented in the Table I. We use two class labels to classify
code slices: 0 that indicates that there is no vulnerability and
1 that reports the existence of a vulnerability.

B. Classifiers

A machine learning classifier receives as an input an at-
tribute vector that corresponds to a code slice and classifies
it as vulnerable or non-vulnerable. There is a wide range of
machine learning algorithms that are able to map input into a
specific class. In order to select the most appropriate classifier
for our problem, we studied the following classes of machine
learning classifiers:

TABLE III
CLASSIFIERS’ RESULTS WITH BALANCED DATASET

Classifier Precision (%) Recall (%) F-Score (%) Acc (%)
CART 85.79 98.59 91.74 91.13

Random Forest 85.76 98.63 91.75 91.13
Naı̈ve Bayes 80.75 99.29 89.06 87.80

KNN 83.03 94.41 88.36 89.60
LR 84.73 98.75 91.20 90.47

MLP 85.78 98.33 91.63 91.01
SVM 85.74 98.68 91.76 91.14

• Decision Tree algorithms: these algorithms use decision
trees to predict a value of class label. A decision tree
consists of nodes that correspond to attribute values to
compare to; branches that correspond to results of the
comparison; and leaves that represent classes. CART
(Classification And Regression Tree) and Random Forest
(RF) are two examples of algorithms that use this method.
CART is one of the most used methods to generate
decision trees. This algorithm generates only binary trees.
Whereas RF generates multiple trees using a random
selection of attributes.

• Probabilistic algorithms: these algorithms assign the class
with highest probability. In this category, we consider
Naı̈ve Bayes (NB), K-Nearest Neighbor (KNN) and Lo-
gistic Regression (LR). NB is a classifier based on Bayes’
theorem with the ”naive” assumption of independence
between attributes. KNN assigns the most common class
among its k neighbors. Finally, LR is a statistical model
that uses a logistic function to classify an instance.

• Network algorithms: this category includes the Multilayer
Perceptron (MP) and the Support Vector Machine (SVM).
MLP is an artificial neural network that uses artificial
neurons to map input data into an output. Whereas, SVM
classifier constructs a hyperplane to classify data.

C. Evaluation Metrics

The metrics chosen to evaluate the classifiers were preci-
sion, recall, f-score and accuracy. To compute these metrics,
it is necessary to know the number of vulnerabilities correctly
detected (true positives), the number of false vulnerabilities
detected (false positives), the number of true vulnerabilities
undetected (false negatives) and the number of no vulnera-
bilities correctly undetected (true negatives). Precision mea-
sures the ratio of vulnerabilities correctly identified among
all vulnerabilities that were discovered and, it is measured
according to the following formula P = TP/(TP+FP) where P is
the precision, TP the true positives and FP the false positives.

Recall measures the ratio of vulnerabilities correctly iden-
tified among the number of total known vulnerabilities and
is given by the following formula R = TP/(TP+FN) where R
represents the recall and FN the false negatives.

F-score is a harmonic mean of the precision and recall
metrics, and it is computed according to the following formula
F-score = 2 × P × R/(P + R).

Accuracy is the ratio of number of correct predictions to
the total number of predictions made. Accuracy is computed



by using the following formula A = (TP+TN)/(TP+TN+FP+FN)
where A represents the accuracy and TN the true negatives.

Ideally, the classifier will have a high positive rate and a
low false negative rate, i.e., precision and recall will have a
high value, and consequently, the F-score will also have a high
value. In addition, it must correctly classify the largest number
of vulnerabilities, which means it should have a high accuracy.

D. Selection of the classifier

In order to select the classifier that best fits our problem,
we considered several machine learning classifiers. To evaluate
performance of each classifier, we used the metrics previously
presented. The classifiers were trained and tested with code
samples from the SRD database [23]. MERLIN processed
33085 files from the SRD database; of which 6061 files were
written in Java and 27024 were written in PHP. It was possible
to train and test the tool with this large volume of files
because the code samples were already properly classified
as vulnerable or non-vulnerable, and this information could
be added to the generated attribute vectors. We also created
our own code samples to evaluate the tool. In total, the tool
generated 65552 vectors. The vectors contained 22 attributes
that characterized code and one class that classified it as
vulnerable or non-vulnerable.

The classifiers were implemented in scikit-learn, which is a
machine learning library for Python. We also used scikit-learn
functions to calculate the proposed evaluation metrics. To vali-
date the models, we used the k-fold cross validation technique
also implemented in scikit-learn. K-fold cross validation is
one of the most used techniques to test the effectiveness of
a machine learning model. This method consists of splitting
the training set into k folds. The classifier is trained with k-1
folds and the remaining one is used to test the model. This
procedure is repeated k times. We chose to split the data set
into 10 subsets (k=10).

Initially, the classifiers returned acceptable results as it is
shown in the Table II. The obtained results can be explained
by the data set being highly unbalanced, as it contained
56547 non-vulnerable data samples and 9005 vulnerable data
samples. NB showed the worst performance. It makes a strong
assumption that the attributes are independent from each other,
which may not be true in our case. KNN was the second worst
classifier. KNN had an unbalanced number of neighbors, and
this may have lead to classifying more data samples as non
vulnerable. The remaining models returned similar results. The
accuracy was about 91%, the precision was around 82%, the
recall was around 79% and the F-Score was 80%.

Next, we tried to improve the results by balancing the
data set. The two most used techniques to balance the data
are oversampling and undersampling. Oversampling involves
replicating the number of instances in the minority class,
while undersampling requires deleting data samples from the
majority class. Since we are working with a large data set,
we chose to use the undersampling technique. Evaluation of
the classifiers trained with the balanced data set is presented

in Table III. In terms of selection of the best classifier,
the results are similar to the results previously obtained for
the unbalanced data set. However, results show remarkable
improvement in precision of the models, which is fundamen-
tal for good performance of the tool. As discussed earlier,
there are some operations that do not always ensure proper
sanitization of input data. This generates uncertainty in the
data set, which also explains the obtained evaluation results.

Even though the results obtained during evaluation of the
classifiers were very similar, we noticed that the values ob-
tained by the SVM algorithm were slightly better. Therefore,
we chose to use the SVM classifier in our tool. At this moment,
MERLIN detects eight types of vulnerabilities. However, it is
possible to configure the tool to detect other types of vulnera-
bilities. To handle a new vulnerability type, we need to update
the configuration file with related information that includes
sensitive sinks, entry points and sanitization functions. Then,
the classifier should be retrained for the model to obtain
new knowledge. After this, MERLIN is capable of detecting
vulnerabilities that belong to the new vulnerability type.

VIII. EXPERIMENTAL EVALUATION

The experimental evaluation aims to answer if the tool is
capable of: 1) detecting vulnerabilities in multiple languages?
2) detecting vulnerabilities in real world web applications? 3)
identifying the same vulnerabilities as other tools that analyze
source code?

A. Multiple Language Vulnerability Detection

As mentioned before, MERLIN is able to detect vulnera-
bilities in multiple languages. For now we decided to focus
on web applications written in Java and PHP. One of the
objectives of the evaluation was to verify MERLIN’s ability
to correctly process code written in Java and PHP in the same
manner. To test this, we ran the tool with web applications
written in Java and PHP containing the same types of vul-
nerabilities and similar sanitization. An example of two code
samples vulnerable to SQLi is shown in Figure 1. The tool
was able to correctly identify the vulnerabilities in both code
samples, so the answer to the first question is positive.

B. Vulnerability Detection in Real World Web Applications

In order to understand whether the tool is capable of detect-
ing vulnerabilities in real world web applications, we evaluated
the tool using two data sets that contained 12 web applications:
a data set that included 6 real world web applications with
vulnerabilities created on purpose (e.g., Mutillidae) and a
data set that included 6 widely used web applications (e.g.,
phpMyAdmin and Spring Security).

First we tested the tool using the data set that contained six
web applications with seeded vulnerabilities. In order to better
evaluate the tool’s performance, we computed the evaluation
metrics used to select the machine learning classifier. To
compute these metrics, we needed to calculate the number
of vulnerabilities contained in the data set by source file
name. Each file was individually analyzed to identify the



TABLE IV
ANALYSIS OF REAL WORLD WEB APPLICATIONS WITH SEEDED VULNERABILITIES

webapp language #loc #files #TP #FP #FN P (%) R (%) F-Score (%)
DVWAP PHP 14,895 353 20 3 7 86.96 74.07 80

Mutillidae PHP 142,515 919 50 20 38 71.43 56.82 63.29
bWAPP PHP 24,070 198 337 0 263 100 56.17 71.93

WackoPicko PHP 1,916 48 19 13 0 59.38 100 74.51
Java Vulnerable Lab Java 1,795 60 73 29 5 71.57 93.59 81.11

HackMe Java 824 17 31 0 14 100 68.89 81.58
Total/Avg Java+PHP 186,015 1,595 530 65 327 81.56 74.92 75.40

TABLE V
ANALYSIS OF OPEN SOURCE WEB APPLICATIONS

webapp language year #loc #files #identified vuln
MantisBT PHP 2017 54,876 449 Yes

phpMyAdmin PHP 2014 143,219 755 Yes
DokuWiki PHP 2010 79,397 709 Yes

MISP PHP 2016 24,006 157 No
Pinpoint Java 2016 28,927 584 No

Spring OAuth2 Java 2015 18,332 230 No
Total Java+PHP - 513,807 2,884 3

vulnerabilities. This task was challenging and time consuming,
as each web application contained a large number of source
files and lines of code. In addition, it was also necessary to
verify if the vulnerabilities identified by the tool were real or
not. We did not consider accuracy to evaluate the tool because
the number of code slices correctly identified as non vulnerable
will always be far more superior to the remaining values.
Hence, this metric will not give any relevant information
regarding the tool’s performance.

The results of the analysis and the processing done are
presented in the Table IV. MERLIN obtained the worst results
when processing Multillidae. These results are mainly due to
the following reasons: how the data flow in CFG is analyzed,
which can be incomplete when the file to be analyzed is long
and contains a lot of conditional paths; incorrect propagation
of interprocedural data flow; and, because Multillidae includes
files containing vulnerable code with inc format that are
not processed by MERLIN, since they do not have a PHP
extension. The first two reasons also influenced the results
obtained with other web applications. bWAPP was the second
web application with the worst results and, with the worst
result regarding the metric recall. This is explained by a
large number of false negative results obtained for bWAPP.
MERLIN was not capable of detecting a few vulnerabilities
that were replicated in nearly every file of the bWAPP web
application. This inability to detect a few vulnerabilities had
a major impact on the calculated value of the recall. It should
also be noted that the vast majority of false positives obtained
in the case of Java Vulnerable Lab web application are found in
jsp files. This is because most jsp files include a jsp header that
contains vulnerable code. When compiling these files, maven
automatically includes the header.jsp bytecode into each of
the processed files. Thus, whenever MERLIN processes these
files, it reports the vulnerability regarding header.jsp, instead of
reporting only when processing header.jsp. In total, MERLIN
was able to correctly detect 530 vulnerabilities.

We also tested the tool with a set of widely used open source
web applications. These web applications belong to a database
called Secbench [34]. Secbench is a data set of real security
vulnerabilities from open source web applications. The vulner-
abilities were mined from Github which hosts millions of open
source web applications. We chose six web application from
this data set. Then we verified whether MERLIN was capable
of detecting the vulnerability identified in the data set. The
obtained results are presented in the Table V. MERLIN was
able to identify vulnerabilities in two out of six analyzed web
applications.

During this evaluation, the tool analyzed 4,479 files and it
processed over 699,822 lines of code. The web application
analyzed with the largest number of files was Mutillidae and
with the most lines of code was phpMyAdmin.

C. Comparison with other tools

We selected two tools – WAP [17] and Achilles [27] – to
compare with MERLIN. As previously mentioned, these two
tools also use machine learning for detecting vulnerabilities.
WAP uses classifiers to predict the existence of false positives
in the identified vulnerabilities. Achilles uses a neural network
to detect vulnerabilities. In order to evaluate the tools, we
chose to use code samples from the SRD database.

Achilles produces as output an n-dimensional vector of
predictions, ranging from 0 to 1 indicating the probability of
risk for each method against each type of vulnerability [27].
The value we defined as threshold to consider the existence of
a vulnerability was 0.95. After running Achilles with a set
of the most basic samples which contained different types
of vulnerabilities, we verified that the tool was unable to
correctly detect any vulnerability. Furthermore, it detected
wrongly other vulnerabilities, and therefore it was not possible
to lower the threshold. When we ran MERLIN with the same
set of code samples, we found that MERLIN was able to
correctly identify all vulnerabilities. Thus, taking into account
the discrepancy between the results obtained with the simplest
samples, we did not carry out any further evaluation.

In order to compare MERLIN to WAP, we randomly
selected 100 code samples written in PHP from the SRD
database. We ensured that the selected samples contained a
balanced number of non-vulnerable and vulnerable samples,
but took no special care to select samples processable by the
tools. To compare the tools, we used the evaluation metrics
previously presented. The results obtained from the tools are
shown in Table VI. From the results, we can conclude that



TABLE VI
EVALUATION OF WAP AND MERLIN

Tool Precision (%) Recall (%) F-Score (%) Acc (%)
MERLIN 65.88 94.92 77.78 73.55

WAP 76.47 22.81 35.14 60.33

MERLIN had better performance than WAP. The accuracy of
MERLIN was 77%, whereas the accuracy of WAP was 57%.
However, it should be noted that the selected code samples
contained sources that were not considered tainted by WAP,
leading to much worse results than those originally reported
for that tool. For instance, WAP does not consider files to be
sources, while the SRD database considers that that form of
input can be malicious.

IX. CONCLUSION

This paper presents an approach to improve web applica-
tion security by detecting vulnerabilities in code written in
different languages using machine learning. The approach was
implemented and evaluated with code samples from the SRD
database and real world web applications written in Java and
PHP. The evaluation shows that the tool is capable of detecting
different types of vulnerabilities in both languages and in real
world web applications.
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